Elmar Rückert

Research output

  1. 2019
  2. Published

    REAL-2019: Robot open-Ended Autonomous Learning competition

    Cartoni, E., Mannella, F., Santucci, V. G., Triesch, J., Rückert, E. & Baldassarre, G., 2019, Proceedings of Machine Learning Research: 3rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019. Vol. 123.2019. p. 142-152 11 p. (Proceedings of Machine Learning Research).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. 2018
  4. Inverse reinforcement learning via nonparametric spatio-temporal subgoal modeling

    Šošić, A., Rueckert, E., Peters, J., Zoubir, A. M. & Koeppl, H., 1 Oct 2018, In: Journal of Machine Learning Research. 19.2018, 69, 45 p.

    Research output: Contribution to journalArticleResearchpeer-review

  5. Probabilistic movement primitives under unknown system dynamics

    Paraschos, A., Rueckert, E., Peters, J. & Neumann, G., 25 Apr 2018, (E-pub ahead of print) In: Advanced robotics. 32.2018, 6, p. 297-310 14 p.

    Research output: Contribution to journalArticleResearchpeer-review

  6. 2017
  7. Published

    A comparison of distance measures for learning nonparametric motor skill libraries

    Stark, S., Peters, J. & Rueckert, E., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 624-630 7 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  8. Published

    Efficient online adaptation with stochastic recurrent neural networks

    Tanneberg, D., Peters, J. & Rueckert, E., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 198-204 7 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  9. Published

    Learning inverse dynamics models in O(n) time with LSTM networks

    Rueckert, E., Nakatenus, M., Tosatto, S. & Peters, J., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 811-816 6 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  10. 2016
  11. Published

    Deep spiking networks for model-based planning in humanoids

    Tanneberg, D., Paraschos, A., Peters, J. & Rueckert, E., 30 Dec 2016, IEEE-RAS International Conference on Humanoid Robots. p. 656-661 6 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  12. Published

    Model estimation and control of compliant contact normal force

    Azad, M., Ortenzi, V., Lin, H. C., Rueckert, E. & Mistry, M., 30 Dec 2016, IEEE-RAS International Conference on Humanoid Robots. p. 442-447 6 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  13. Published

    A low-cost sensor glove with vibrotactile feedback and multiple finger joint and hand motion sensing for human-robot interaction

    Weber, P., Rueckert, E., Calandra, R., Peters, J. & Beckerle, P., 15 Nov 2016, p. 99-104. 6 p.

    Research output: Contribution to conferencePaperpeer-review

  14. Published

    Learning soft task priorities for control of redundant robots

    Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J. & Ivaldi, S., 8 Jun 2016, In: Proceedings - IEEE International Conference on Robotics and Automation. p. 221-226 6 p.

    Research output: Contribution to journalConference articlepeer-review