Elmar Rückert

Research output

  1. 2021
  2. Published

    A novel chlorophyll fluorescence-based approach for mowing area classification

    Rottmann, N., Bruder, R., Schweikard, A. & Rückert, E., 15 Feb 2021, In: IEEE sensors journal. 21, 4, p. 4500-4508 9 p., 9234496.

    Research output: Contribution to journalArticleResearchpeer-review

  3. Published

    KI 2021: Advances in Artificial Intelligence - Preface

    Edelkamp, S., Möller, R. & Rückert, E., 2021, KI 2021: Advances in Artificial Intelligence: 44th German Conference on AI, Virtual Event, September 27 – October 1, 2021, Proceedings. Edelkamp, S., Möller, R. & Rückert, E. (eds.). Vol. 12873 LNAI. p. v-vi (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. 2020
  5. Published

    Evolutionary training and abstraction yields algorithmic generalization of neural computers

    Tanneberg, D., Rückert, E. & Peters, J., 16 Nov 2020, In: Nature machine intelligence.

    Research output: Contribution to journalArticleResearchpeer-review

  6. Published

    Exploiting Chlorophyll Fluorescense for building robust low-cost Mowing Area Detectors

    Rottmann, N., Bruder, R., Schweikard, A. & Rueckert, E., 25 Oct 2020.

    Research output: Contribution to conferencePaperpeer-review

  7. Published

    Learning hierarchical acquisition functions for bayesian optimization

    Rottmann, N., Kunavar, T., Babic, J., Peters, J. & Rueckert, E., 24 Oct 2020, IEEE International Conference on Intelligent Robots and Systems. p. 5490-5496 7 p. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  8. Efficient Body Registration Using Single-View Range Imaging and Generic Shape Templates

    Çallar, T. C., Rueckert, E. & Böttger, S., 1 Sept 2020, In: Current directions in biomedical engineering. 6.2020, 3, 4 p., 20203031.

    Research output: Contribution to journalArticleResearchpeer-review

  9. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

    Rückert, E., Čamernik, J., Peters, J. & Babič, J., 16 Apr 2020, In: Scientific reports. 6.2016, 1, 12 p., 28455 / 6694.

    Research output: Contribution to journalArticleResearchpeer-review

  10. 2019
  11. Published

    Experience Reuse with Probabilistic Movement Primitives

    Stark, S., Peters, J. & Rueckert, E., Nov 2019, IEEE International Conference on Intelligent Robots and Systems. p. 1210-1217 8 p. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  12. Medical robotics simulation framework for application-specific optimal kinematics

    Böttger, S., Çallar, T. C., Schweikard, A. & Rückert, E., 18 Sept 2019, In: Current directions in biomedical engineering. 5.2019, 1, p. 145-148 4 p.

    Research output: Contribution to journalArticleResearchpeer-review

  13. Published

    Loop closure detection in closed environments

    Rottmann, N., Bruder, R., Schweikard, A. & Rueckert, E., Sept 2019.

    Research output: Contribution to conferencePaperpeer-review