Elmar Rückert

Research output

  1. Published

    Model-free Probabilistic Movement Primitives for physical interaction

    Paraschos, A., Rueckert, E., Peters, J. & Neumann, G., 11 Dec 2015, IEEE International Conference on Intelligent Robots and Systems. p. 2860-2866 7 p. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Published

    Multimodal Human-Autonomous Agents Interaction Using Pre-Trained Language and Visual Foundation Models

    Nwankwo, L. & Rückert, E., 11 Mar 2024.

    Research output: Contribution to conferencePosterResearchpeer-review

  3. Published
  4. Published

    Physics-informed neural network for predicting Gibbs free energy

    Vincely, C., Sakic, A., Dave, V., Povoden-Karadeniz, E., Rückert, E. & Holec, D., 2023.

    Research output: Contribution to conferencePosterResearch

  5. Published
  6. Published

    Predicting full-arm grasping motions from anticipated tactile responses

    Dave, V. & Rueckert, E., 26 Sept 2022, IEEE-RAS International Conference on Humanoid Robots. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  7. E-pub ahead of print

    Predictive Exoskeleton Control for Arm-Motion Augmentation Based on Probabilistic Movement Primitives Combined with a Flow Controller

    Jamsek, M., Kunavar, T., Bobek, U., Rueckert, E. & Babic, J., 25 Mar 2021, (E-pub ahead of print) In: IEEE robotics and automation letters. 6.2021, 3, p. 4417-4424 8 p., 9387088.

    Research output: Contribution to journalArticleResearchpeer-review

  8. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

    Rückert, E., Čamernik, J., Peters, J. & Babič, J., 16 Apr 2020, In: Scientific reports. 6.2016, 1, 12 p., 28455 / 6694.

    Research output: Contribution to journalArticleResearchpeer-review

  9. Probabilistic movement primitives under unknown system dynamics

    Paraschos, A., Rueckert, E., Peters, J. & Neumann, G., 25 Apr 2018, (E-pub ahead of print) In: Advanced robotics. 32.2018, 6, p. 297-310 14 p.

    Research output: Contribution to journalArticleResearchpeer-review

  10. Published

    REAL-2019: Robot open-Ended Autonomous Learning competition

    Cartoni, E., Mannella, F., Santucci, V. G., Triesch, J., Rückert, E. & Baldassarre, G., 2019, Proceedings of Machine Learning Research: 3rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019. Vol. 123.2019. p. 142-152 11 p. (Proceedings of Machine Learning Research).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution