Elmar Rückert

Research output

  1. Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems

    Rückert, E. & d'Avella, A., 17 Oct 2013, In: Frontiers in computational neuroscience. 7.2013, October, 18 p.

    Research output: Contribution to journalArticleResearchpeer-review

  2. Stochastic Optimal Control Methods for Investigating the Power of Morphological Computation

    Rückert, E. A. & Neumann, G., Jan 2013, In: Artificial Life. 19.2013, 1, p. 115–131 17 p.

    Research output: Contribution to journalArticleResearchpeer-review

  3. Learned graphical models for probabilistic planning provide a new class of movement primitives

    Rückert, E. A., Neumann, G., Toussaint, M. & Maass, W., 2 Jan 2013, (E-pub ahead of print) In: Frontiers in computational neuroscience. 6.2013, January, 20 p., 97.

    Research output: Contribution to journalArticleResearchpeer-review

  4. Published

    Extracting low-dimensional control variables for movement primitives

    Rueckert, E., Mundo, J., Paraschos, A., Peters, J. & Neumann, G., 29 Jun 2015, In: Proceedings / IEEE International Conference on Robotics and Automation. 2015-June, June, p. 1511-1518 8 p., 7139390.

    Research output: Contribution to journalConference articlepeer-review

  5. Published

    Robust policy updates for stochastic optimal control

    Rueckert, E., Mindt, M., Peters, J. & Neumann, G., 12 Feb 2015, p. 388-393. 6 p.

    Research output: Contribution to conferencePaperpeer-review

  6. Published

    Learning inverse dynamics models in O(n) time with LSTM networks

    Rueckert, E., Nakatenus, M., Tosatto, S. & Peters, J., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 811-816 6 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  7. Inverse reinforcement learning via nonparametric spatio-temporal subgoal modeling

    Šošić, A., Rueckert, E., Peters, J., Zoubir, A. M. & Koeppl, H., 1 Oct 2018, In: Journal of Machine Learning Research. 19.2018, 69, 45 p.

    Research output: Contribution to journalArticleResearchpeer-review

  8. Published

    A comparison of distance measures for learning nonparametric motor skill libraries

    Stark, S., Peters, J. & Rueckert, E., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 624-630 7 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  9. Published

    Experience Reuse with Probabilistic Movement Primitives

    Stark, S., Peters, J. & Rueckert, E., Nov 2019, IEEE International Conference on Intelligent Robots and Systems. p. 1210-1217 8 p. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  10. Published

    SKID RAW: Skill Discovery from Raw Trajectories

    Tanneberg, D., Ploeger, K., Rueckert, E. & Peters, J., Jul 2021, In: IEEE robotics and automation letters. 6, 3, p. 4696-4703 8 p., 9387162.

    Research output: Contribution to journalArticleResearchpeer-review