Learned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems
Research output: Contribution to journal › Article › Research › peer-review
Authors
External Organisational units
- Technische Universität Graz
- Laboratory of Neuromotor Physiology, Rome
Abstract
Asalientfeatureofhumanmotorskilllearningistheabilitytoexploitsimilaritiesacrossrelatedtasks.Inbiologicalmotorcontrol,ithasbeenhypothesizedthatmusclesynergies,coherentactivationsofgroupsofmuscles,allowforexploitingsharedknowledge.Recentstudieshaveshownthatarichsetofcomplexmotorskillscanbegeneratedbyacombinationofasmallnumberofmusclesynergies.Inrobotics,dynamicmovementprimitivesarecommonlyusedformotorskilllearning.Thismachinelearningapproachimplementsastableattractorsystemthatfacilitateslearninganditcanbeusedinhigh-dimensionalcontinuousspaces.However,itdoesnotallowforreusingsharedknowledge,i.e.,foreachtaskanindividualsetofparametershastobelearned.Weproposeanovelmovementprimitiverepresentationthatemploysparametrizedbasisfunctions,whichcombinesthebenefitsofmusclesynergiesanddynamicmovementprimitives.Foreachtaskasuperpositionofsynergiesmodulatesastableattractorsystem.Thisapproachleadstoacompactrepresentationofmultiplemotorskillsandatthesametimeenablesefficientlearninginhigh-dimensionalcontinuoussystems.Themovementrepresentationsupportsdiscreteandrhythmicmovementsandinparticularincludesthedynamicmovementprimitiveapproachasaspecialcase.Wedemonstratethefeasibilityofthemovementrepresentationinthreemulti-tasklearningsimulatedscenarios.First,thecharacteristicsoftheproposedrepresentationareillustratedinapoint-masstask.Second,incomplexhumanoidwalkingexperiments,multiplewalkingpatternswithdifferentstepheightsarelearnedrobustlyandefficiently.Finally,inamulti-directionalreachingtasksimulatedwithamusculoskeletalmodelofthehumanarm,weshowhowtheproposedmovementprimitivescanbeusedtolearnappropriatemuscleexcitationpatternsandtogeneralizeeffectivelytonewreachingskills.
Details
Original language | Undefined/Unknown |
---|---|
Number of pages | 18 |
Journal | Frontiers in computational neuroscience |
Volume | 7.2013 |
Issue number | October |
DOIs | |
Publication status | Published - 17 Oct 2013 |
Externally published | Yes |