Learned graphical models for probabilistic planning provide a new class of movement primitives
Research output: Contribution to journal › Article › Research › peer-review
Authors
External Organisational units
- Technische Universität Graz
- Freie Universität Berlin
Abstract
Biologicalmovementgenerationcombinesthreeinterestingaspects:itsmodularorganizationinmovementprimitives(MPs),itscharacteristicsofstochasticoptimalityunderperturbations,anditsefficiencyintermsoflearning.Acommonapproachtomotorskilllearningistoendowtheprimitiveswithdynamicalsystems.Here,theparametersoftheprimitiveindirectlydefinetheshapeofareferencetrajectory.WeproposeanalternativeMPrepresentationbasedonprobabilisticinferenceinlearnedgraphicalmodelswithnewandinterestingpropertiesthatcomplieswithsalientfeaturesofbiologicalmovementcontrol.Insteadofendowingtheprimitiveswithdynamicalsystems,weproposetoendowMPswithanintrinsicprobabilisticplanningsystem,integratingthepowerofstochasticoptimalcontrol(SOC)methodswithinaMP.Theparameterizationoftheprimitiveisagraphicalmodelthatrepresentsthedynamicsandintrinsiccostfunctionsuchthatinferenceinthisgraphicalmodelyieldsthecontrolpolicy.Weparameterizetheintrinsiccostfunctionusingtask-relevantfeatures,suchastheimportanceofpassingthroughcertainvia-points.Thesystemdynamicsaswellasintrinsiccostfunctionparametersarelearnedinareinforcementlearning(RL)setting.Weevaluateourapproachonacomplex4-linkbalancingtask.Ourexperimentsshowthatourmovementrepresentationfacilitateslearningsignificantlyandleadstobettergeneralizationtonewtasksettingswithoutre-learning.
Details
Original language | English |
---|---|
Article number | 97 |
Number of pages | 20 |
Journal | Frontiers in computational neuroscience |
Volume | 6.2013 |
Issue number | January |
DOIs | |
Publication status | E-pub ahead of print - 2 Jan 2013 |
Externally published | Yes |