Learned graphical models for probabilistic planning provide a new class of movement primitives
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Externe Organisationseinheiten
- Technische Universität Graz
- Freie Universität Berlin
Abstract
Biologicalmovementgenerationcombinesthreeinterestingaspects:itsmodularorganizationinmovementprimitives(MPs),itscharacteristicsofstochasticoptimalityunderperturbations,anditsefficiencyintermsoflearning.Acommonapproachtomotorskilllearningistoendowtheprimitiveswithdynamicalsystems.Here,theparametersoftheprimitiveindirectlydefinetheshapeofareferencetrajectory.WeproposeanalternativeMPrepresentationbasedonprobabilisticinferenceinlearnedgraphicalmodelswithnewandinterestingpropertiesthatcomplieswithsalientfeaturesofbiologicalmovementcontrol.Insteadofendowingtheprimitiveswithdynamicalsystems,weproposetoendowMPswithanintrinsicprobabilisticplanningsystem,integratingthepowerofstochasticoptimalcontrol(SOC)methodswithinaMP.Theparameterizationoftheprimitiveisagraphicalmodelthatrepresentsthedynamicsandintrinsiccostfunctionsuchthatinferenceinthisgraphicalmodelyieldsthecontrolpolicy.Weparameterizetheintrinsiccostfunctionusingtask-relevantfeatures,suchastheimportanceofpassingthroughcertainvia-points.Thesystemdynamicsaswellasintrinsiccostfunctionparametersarelearnedinareinforcementlearning(RL)setting.Weevaluateourapproachonacomplex4-linkbalancingtask.Ourexperimentsshowthatourmovementrepresentationfacilitateslearningsignificantlyandleadstobettergeneralizationtonewtasksettingswithoutre-learning.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 97 |
Seitenumfang | 20 |
Fachzeitschrift | Frontiers in computational neuroscience |
Jahrgang | 6.2013 |
Ausgabenummer | January |
DOIs | |
Status | Elektronische Veröffentlichung vor Drucklegung. - 2 Jan. 2013 |
Extern publiziert | Ja |