Learned graphical models for probabilistic planning provide a new class of movement primitives
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Frontiers in computational neuroscience, Vol. 6.2013, No. January, 97, 02.01.2013.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Learned graphical models for probabilistic planning provide a new class of movement primitives
AU - Rückert, Elmar A.
AU - Neumann, Gerhard
AU - Toussaint, Marc
AU - Maass, Wolfgang
PY - 2013/1/2
Y1 - 2013/1/2
N2 - Biologicalmovementgenerationcombinesthreeinterestingaspects:itsmodularorganizationinmovementprimitives(MPs),itscharacteristicsofstochasticoptimalityunderperturbations,anditsefficiencyintermsoflearning.Acommonapproachtomotorskilllearningistoendowtheprimitiveswithdynamicalsystems.Here,theparametersoftheprimitiveindirectlydefinetheshapeofareferencetrajectory.WeproposeanalternativeMPrepresentationbasedonprobabilisticinferenceinlearnedgraphicalmodelswithnewandinterestingpropertiesthatcomplieswithsalientfeaturesofbiologicalmovementcontrol.Insteadofendowingtheprimitiveswithdynamicalsystems,weproposetoendowMPswithanintrinsicprobabilisticplanningsystem,integratingthepowerofstochasticoptimalcontrol(SOC)methodswithinaMP.Theparameterizationoftheprimitiveisagraphicalmodelthatrepresentsthedynamicsandintrinsiccostfunctionsuchthatinferenceinthisgraphicalmodelyieldsthecontrolpolicy.Weparameterizetheintrinsiccostfunctionusingtask-relevantfeatures,suchastheimportanceofpassingthroughcertainvia-points.Thesystemdynamicsaswellasintrinsiccostfunctionparametersarelearnedinareinforcementlearning(RL)setting.Weevaluateourapproachonacomplex4-linkbalancingtask.Ourexperimentsshowthatourmovementrepresentationfacilitateslearningsignificantlyandleadstobettergeneralizationtonewtasksettingswithoutre-learning.
AB - Biologicalmovementgenerationcombinesthreeinterestingaspects:itsmodularorganizationinmovementprimitives(MPs),itscharacteristicsofstochasticoptimalityunderperturbations,anditsefficiencyintermsoflearning.Acommonapproachtomotorskilllearningistoendowtheprimitiveswithdynamicalsystems.Here,theparametersoftheprimitiveindirectlydefinetheshapeofareferencetrajectory.WeproposeanalternativeMPrepresentationbasedonprobabilisticinferenceinlearnedgraphicalmodelswithnewandinterestingpropertiesthatcomplieswithsalientfeaturesofbiologicalmovementcontrol.Insteadofendowingtheprimitiveswithdynamicalsystems,weproposetoendowMPswithanintrinsicprobabilisticplanningsystem,integratingthepowerofstochasticoptimalcontrol(SOC)methodswithinaMP.Theparameterizationoftheprimitiveisagraphicalmodelthatrepresentsthedynamicsandintrinsiccostfunctionsuchthatinferenceinthisgraphicalmodelyieldsthecontrolpolicy.Weparameterizetheintrinsiccostfunctionusingtask-relevantfeatures,suchastheimportanceofpassingthroughcertainvia-points.Thesystemdynamicsaswellasintrinsiccostfunctionparametersarelearnedinareinforcementlearning(RL)setting.Weevaluateourapproachonacomplex4-linkbalancingtask.Ourexperimentsshowthatourmovementrepresentationfacilitateslearningsignificantlyandleadstobettergeneralizationtonewtasksettingswithoutre-learning.
U2 - 10.3389/fncom.2012.00097
DO - 10.3389/fncom.2012.00097
M3 - Article
VL - 6.2013
JO - Frontiers in computational neuroscience
JF - Frontiers in computational neuroscience
SN - 1662-5188
IS - January
M1 - 97
ER -