Elmar Rückert

Research output

  1. Published

    Deep spiking networks for model-based planning in humanoids

    Tanneberg, D., Paraschos, A., Peters, J. & Rueckert, E., 30 Dec 2016, IEEE-RAS International Conference on Humanoid Robots. p. 656-661 6 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Published

    Efficient online adaptation with stochastic recurrent neural networks

    Tanneberg, D., Peters, J. & Rueckert, E., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 198-204 7 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  3. Published

    A comparison of distance measures for learning nonparametric motor skill libraries

    Stark, S., Peters, J. & Rueckert, E., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 624-630 7 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Published

    Experience Reuse with Probabilistic Movement Primitives

    Stark, S., Peters, J. & Rueckert, E., Nov 2019, IEEE International Conference on Intelligent Robots and Systems. p. 1210-1217 8 p. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  5. Inverse reinforcement learning via nonparametric spatio-temporal subgoal modeling

    Šošić, A., Rueckert, E., Peters, J., Zoubir, A. M. & Koeppl, H., 1 Oct 2018, In: Journal of Machine Learning Research. 19.2018, 69, 45 p.

    Research output: Contribution to journalArticleResearchpeer-review

  6. Published

    Extracting low-dimensional control variables for movement primitives

    Rueckert, E., Mundo, J., Paraschos, A., Peters, J. & Neumann, G., 29 Jun 2015, In: Proceedings / IEEE International Conference on Robotics and Automation. 2015-June, June, p. 1511-1518 8 p., 7139390.

    Research output: Contribution to journalConference articlepeer-review

  7. Published

    Robust policy updates for stochastic optimal control

    Rueckert, E., Mindt, M., Peters, J. & Neumann, G., 12 Feb 2015, p. 388-393. 6 p.

    Research output: Contribution to conferencePaperpeer-review

  8. Published

    Learning inverse dynamics models in O(n) time with LSTM networks

    Rueckert, E., Nakatenus, M., Tosatto, S. & Peters, J., 22 Dec 2017, IEEE-RAS International Conference on Humanoid Robots. p. 811-816 6 p. (IEEE-RAS International Conference on Humanoid Robots).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  9. Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control

    Rückert, E., Čamernik, J., Peters, J. & Babič, J., 16 Apr 2020, In: Scientific reports. 6.2016, 1, 12 p., 28455 / 6694.

    Research output: Contribution to journalArticleResearchpeer-review

  10. Recurrent Spiking Networks Solve Planning Tasks

    Rückert, E., Kappel, D., Tanneberg, D., Pecevski, D. & Peters, J., 18 Feb 2016, In: Scientific reports. 6.2016, 21142, 10 p., 21142.

    Research output: Contribution to journalArticleResearchpeer-review