Möbius orthogonality for sequences with maximal entropy

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Standard

Möbius orthogonality for sequences with maximal entropy. / Drmota, Michael; Mauduit, Christian; Rivat, Joel et al.
in: Journal d'analyse mathématique, Jahrgang 146.2022, Nr. August, 03.06.2022, S. 531-548.

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Vancouver

Drmota M, Mauduit C, Rivat J, Spiegelhofer L. Möbius orthogonality for sequences with maximal entropy. Journal d'analyse mathématique. 2022 Jun 3;146.2022(August):531-548. doi: 10.1007/s11854-022-0201-z

Author

Drmota, Michael ; Mauduit, Christian ; Rivat, Joel et al. / Möbius orthogonality for sequences with maximal entropy. in: Journal d'analyse mathématique. 2022 ; Jahrgang 146.2022, Nr. August. S. 531-548.

Bibtex - Download

@article{6f413ac1b8564d8d865dc7f26b671c48,
title = "M{\"o}bius orthogonality for sequences with maximal entropy",
abstract = "We prove that strongly b-multiplicative functions of modulus 1 along squares areasymptotically orthogonal to the M{\"o}bius function. This provides examples of sequences having maximal entropy and satisfying this property.",
keywords = "M{\"o}bius orthogonaly, Maximal entropy",
author = "Michael Drmota and Christian Mauduit and Joel Rivat and Lukas Spiegelhofer",
year = "2022",
month = jun,
day = "3",
doi = "10.1007/s11854-022-0201-z",
language = "English",
volume = "146.2022",
pages = "531--548",
journal = " Journal d'analyse math{\'e}matique",
issn = "0021-7670",
publisher = "Springer",
number = "August",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - Möbius orthogonality for sequences with maximal entropy

AU - Drmota, Michael

AU - Mauduit, Christian

AU - Rivat, Joel

AU - Spiegelhofer, Lukas

PY - 2022/6/3

Y1 - 2022/6/3

N2 - We prove that strongly b-multiplicative functions of modulus 1 along squares areasymptotically orthogonal to the Möbius function. This provides examples of sequences having maximal entropy and satisfying this property.

AB - We prove that strongly b-multiplicative functions of modulus 1 along squares areasymptotically orthogonal to the Möbius function. This provides examples of sequences having maximal entropy and satisfying this property.

KW - Möbius orthogonaly

KW - Maximal entropy

U2 - 10.1007/s11854-022-0201-z

DO - 10.1007/s11854-022-0201-z

M3 - Article

VL - 146.2022

SP - 531

EP - 548

JO - Journal d'analyse mathématique

JF - Journal d'analyse mathématique

SN - 0021-7670

IS - August

ER -