Möbius orthogonality for sequences with maximal entropy
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Journal d'analyse mathématique, Jahrgang 146.2022, Nr. August, 03.06.2022, S. 531-548.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Möbius orthogonality for sequences with maximal entropy
AU - Drmota, Michael
AU - Mauduit, Christian
AU - Rivat, Joel
AU - Spiegelhofer, Lukas
PY - 2022/6/3
Y1 - 2022/6/3
N2 - We prove that strongly b-multiplicative functions of modulus 1 along squares areasymptotically orthogonal to the Möbius function. This provides examples of sequences having maximal entropy and satisfying this property.
AB - We prove that strongly b-multiplicative functions of modulus 1 along squares areasymptotically orthogonal to the Möbius function. This provides examples of sequences having maximal entropy and satisfying this property.
KW - Möbius orthogonaly
KW - Maximal entropy
U2 - 10.1007/s11854-022-0201-z
DO - 10.1007/s11854-022-0201-z
M3 - Article
VL - 146.2022
SP - 531
EP - 548
JO - Journal d'analyse mathématique
JF - Journal d'analyse mathématique
SN - 0021-7670
IS - August
ER -