Realistic structural properties of amorphous SiNx from machine-learning-assisted molecular dynamics

Research output: Contribution to conferencePosterResearch

Standard

Realistic structural properties of amorphous SiNx from machine-learning-assisted molecular dynamics. / Nayak, Ganesh Kumar; Prashanth, Srinivasan; Todt, Juraj et al.
2023. Poster session presented at ICMCTF 2023, San Diego, United States.

Research output: Contribution to conferencePosterResearch

Harvard

Vancouver

Author

Nayak, Ganesh Kumar ; Prashanth, Srinivasan ; Todt, Juraj et al. / Realistic structural properties of amorphous SiNx from machine-learning-assisted molecular dynamics. Poster session presented at ICMCTF 2023, San Diego, United States.

Bibtex - Download

@conference{96aceee048f84733b583a1da1919c878,
title = "Realistic structural properties of amorphous SiNx from machine-learning-assisted molecular dynamics",
author = "Nayak, {Ganesh Kumar} and Srinivasan Prashanth and Juraj Todt and Rostislav Daniel and David Holec",
year = "2023",
language = "English",
note = "ICMCTF 2023 ; Conference date: 21-05-2023 Through 26-05-2023",

}

RIS (suitable for import to EndNote) - Download

TY - CONF

T1 - Realistic structural properties of amorphous SiNx from machine-learning-assisted molecular dynamics

AU - Nayak, Ganesh Kumar

AU - Prashanth, Srinivasan

AU - Todt, Juraj

AU - Daniel, Rostislav

AU - Holec, David

PY - 2023

Y1 - 2023

M3 - Poster

T2 - ICMCTF 2023

Y2 - 21 May 2023 through 26 May 2023

ER -