Modeling of manganese sulfide formation during the solidification of steel
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
Abstract
A comprehensive model was developed to simulate manganese sulfide formation during the solidification of steel. This model coupled the formation kinetics of manganese sulfide with a microsegregation model linked to thermodynamic databases. Classical nucleation theory and a diffusion-controlled growth model were applied to describe the formation process. Particle size distribution (PSD) and particle-size-grouping (PSG) methods were used to model the size evolution. An adjustable parameter was introduced to consider collisions and was calibrated using the experimental results. With the determined parameters, the influences of the sulfur content and cooling rate on manganese sulfide formation were well predicted and in line with the experimental results. Combining the calculated and experimental results, it was found that with a decreasing cooling rate, the size distribution shifted entirely to larger values and the total inclusion number clearly decreased; however, with increasing sulfur content, the inclusion size increased, while the total inclusion number remained relatively constant.
Details
Original language | English |
---|---|
Pages (from-to) | 1797-1812 |
Number of pages | 16 |
Journal | Journal of materials science |
Volume | 52.2017 |
Issue number | 3 |
Early online date | 14 Oct 2016 |
DOIs | |
Publication status | Published - Feb 2017 |