Modeling of manganese sulfide formation during the solidification of steel

Research output: Contribution to journalArticleResearchpeer-review

Organisational units

Abstract

A comprehensive model was developed to simulate manganese sulfide formation during the solidification of steel. This model coupled the formation kinetics of manganese sulfide with a microsegregation model linked to thermodynamic databases. Classical nucleation theory and a diffusion-controlled growth model were applied to describe the formation process. Particle size distribution (PSD) and particle-size-grouping (PSG) methods were used to model the size evolution. An adjustable parameter was introduced to consider collisions and was calibrated using the experimental results. With the determined parameters, the influences of the sulfur content and cooling rate on manganese sulfide formation were well predicted and in line with the experimental results. Combining the calculated and experimental results, it was found that with a decreasing cooling rate, the size distribution shifted entirely to larger values and the total inclusion number clearly decreased; however, with increasing sulfur content, the inclusion size increased, while the total inclusion number remained relatively constant.

Details

Original languageEnglish
Pages (from-to)1797-1812
Number of pages16
JournalJournal of materials science
Volume52.2017
Issue number3
Early online date14 Oct 2016
DOIs
Publication statusPublished - Feb 2017