Simulation of the Refining Process of Ultra-Low Carbon (ULC) Steel

Research output: Contribution to journalArticleResearchpeer-review

Authors

Organisational units

External Organisational units

  • RHI Magnesita
  • Primetals Technologies Austria GmbH

Abstract

The standard production route for mild steels for automotive purposes is still based on conventional continuous casting (CC) and hot strip rolling (HSR). The current trend towards the “zero-carbon car” will demand the abating of material emissions in the future. Thin slab casting and direct rolling (e.g., Arvedi endless strip production (ESP)) is an approach to reduce CO2 emissions by 50% compared to CC and HSR. One of the main limitations in applying ESP for the production of ultra-low carbon/interstitial free (ULC/IF) steels is clogging. Clogging is the blockage of the submerged entry nozzle due to the build-up of oxide layers or an oxide network. The high clogging sensitivity of IF steels results most probably from the FeTi addition, and hence, a general change of the deoxidation practice might be an option to overcome these problems. In the present work, the thorough refining process of ULC steel was simulated by addressing the different deoxidation routes and the influence of titanium (Ti) alloying on steel cleanness. The developed ladle furnace (LF) and the Ruhrstahl Heraeus (RH) refining models were applied to perform the simulation. Before the simulations, the models are briefly described and validated by the published industrial data.

Details

Original languageEnglish
Article number893
Number of pages13
JournalCrystals
Volume11.2021
Issue number8
DOIs
Publication statusPublished - 30 Jul 2021