Direct Numerical Solution of the LQR with Input Derivative Regularization Problem
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- École de Technologie Supériore Montréal
Abstract
This paper develops a new method for computing the state feedback gain of a Linear Quadratic Regulator (LQR) with input derivative weighting that circumvents solving the Riccati equation. The additional penalty on the derivatives of the input introduces intuitively tunable weights and enables smoother control characteristics without the need of model extension. This is motivated by position controlled mechanical systems. The physical limitations of these systems are usually their velocity and acceleration rather than the position itself. The presented algorithm is based on a discretization approach to the calculus of variations and translating the original problem into a least-squares with equality constraints problem. The control performance is analyzed using a laboratory setup of an underactuated crane-like system.
Details
Original language | English |
---|---|
Pages (from-to) | 4846-4851 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 56.2023 |
Issue number | 2 |
Early online date | 22 Nov 2023 |
DOIs | |
Publication status | Published - 22 Nov 2023 |
Event | IFAC World Congress 2023 - Yokohama, Japan Duration: 9 Jul 2023 → 14 Jul 2023 |