Controlled rolling contact fatigue in railway wheels

Research output: ThesisDoctoral Thesis

Authors

Organisational units

Abstract

The current work deals with the problem of rolling contact fatigue found in railway wheels. The finite element method is adopted to mathematically model the wheel-rail system and simulate the loads acting in the system. Results from the multi-body simulation software SIMPACK are integrated in the wheel-rail model developed using the finite element code ABAQUS/Explicit. Different loading scenarios and combinations of these scenarios are analyzed. Reaction forces, reaction moments, slip rates, plastic deformations, stresses and strains in the system are studied. A detailed analysis is made for the plastic strain and the eventual possible damage accumulated in the contact region of the wheel. The detailed analysis is facilitated by modeling only a part of the wheel rather then modeling the complete wheel. A fine mesh in the contact region enables a magnified overview of the development of various physical quantities in the region. Dynamic and quasi-static models are developed. ABAQUS/Standard is used to determine the accumulation of plastic strain in the contact region in a wheel under repeated loading. The damage indicator concept is integrated with the ABAQUS/Standard calculation using a FORTRAN code. A comparison of the results obtained from cyclic loading calculations is made with the shakedown map for a point contact, thus the validity of the shakedown theory in the wheel-rail contact problem is looked upon. Qualitative and quantitative conclusions are drawn regarding the development of damage under the normal service life of a railway wheel. Various loading scenarios identified by the normal load and the traction coefficient are investigated and compared.

Details

Translated title of the contributionKontrollierte Rollkontaktermüdung in Eisenbahnrädern
Original languageEnglish
QualificationDr.mont.
Supervisors/Advisors
Publication statusPublished - 2008