Computational materials science, 0927-0256
Journal
ISSNs | 0927-0256 |
---|
Research output
- 2025
- Published
Accurate prediction of structural and mechanical properties on amorphous materials enabled through machine-learning potentials: A case study of silicon nitride
Nayak, G. K., Srinivasan, P., Todt, J., Daniel, R., Nicolini, P. & Holec, D., 6 Jan 2025, In: Computational materials science. 249.2025, 5 February, 11 p., 113629.Research output: Contribution to journal › Article › Research › peer-review
- 2024
- Published
Descriptors based on the density of states for efficient machine learning of grain-boundary segregation energies
Dösinger, C. A., Hammerschmidt, T., Peil, O. E., Scheiber, D. & Romaner, L., 13 Nov 2024, In: Computational materials science. 247.2025, 31 January 2025, 10 p., 113493.Research output: Contribution to journal › Article › Research › peer-review
- 2023
- Published
Data-mining of in-situ TEM experiments: Towards understanding nanoscale fracture
Steinberger, D., Issa, I., Strobl, R., Imrich, P. J., Kiener, D. & Sandfeld, S., 5 Jan 2023, In: Computational materials science. 216.2023, 5 January, 9 p., 111830.Research output: Contribution to journal › Article › Research › peer-review
- 2022
- E-pub ahead of print
Stability and ordering of bcc and hcp TiAl+Mo phases: An ab initio study
Dehghani, M., Ruban, A. V., Abdoshahi, N., Holec, D. & Spitaler, J., 18 Jan 2022, (E-pub ahead of print) In: Computational materials science. 205.2022, 1 April, 11 p., 111163.Research output: Contribution to journal › Article › Research › peer-review
- 2021
- Published
An atomistic view on Oxygen, antisites and vacancies in the γ-TiAl phase
Razumovskiy, V. I., Ecker, W., Wimler, D., Fischer, F-D., Appel, F., Mayer, S. & Clemens, H., Sept 2021, In: Computational materials science. 197.2021, September, 8 p., 110655.Research output: Contribution to journal › Article › Research › peer-review
- 2018
- Published
Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten
Goel, S., Cross, G., Stukowski, A., Gamsjäger, E., Beake, B. & Agrawal, A., 2018, In: Computational materials science. 152, p. 196-210 15 p.Research output: Contribution to journal › Article › Research › peer-review
- 2017
- E-pub ahead of print
Structure and surface energy of Au55 nanoparticles: An ab initio study
Holec, D., Fischer, F-D. & Vollath, D., 6 Apr 2017, (E-pub ahead of print) In: Computational materials science. 134.2017, 15 June, p. 137-144 8 p.Research output: Contribution to journal › Article › Research › peer-review
- Published
Incorporation of vacancy generation/annihilation into reactive diffusion concept – Prediction of possible Kirkendall porosity
Svoboda, J. & Fischer, F-D., 1 Feb 2017, In: Computational materials science. 127.2017, 1 February, p. 136-140 5 p.Research output: Contribution to journal › Article › Research › peer-review
- 2016
- Published
Numerical analysis of macrosegregation in vertically solidified Pb-Sn test castings - Part I: Columnar solidification
Wu, M., Zeng, Y., Kharicha, A. & Ludwig, A., 2016, In: Computational materials science.Research output: Contribution to journal › Article › Research › peer-review
- Published
Numerical analysis of macrosegregation in vertically solidified Pb-Sn test castings – Part II : Equiaxed solidification
Zheng, Y., Wu, M., Kharicha, A. & Ludwig, A., 2016, In: Computational materials science.Research output: Contribution to journal › Article › Research › peer-review