No two non-real conjugates of a Pisot number have the same imaginary parts
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Organisationseinheiten
Externe Organisationseinheiten
- University of Waterloo
- Vilnius University
Abstract
We show that the number α=(1+3+25√−−−−−−−√)/2 with minimal polynomial x4−2x3+x−1 is the only Pisot number whose four distinct conjugates α1,α2,α3,α4 satisfy the additive relation α1+α2=α3+α4. This implies that there exists no two non-real conjugates of a Pisot number with the same imaginary part and also that at most two conjugates of a Pisot number can have the same real part. On the other hand, we prove that similar four term equations α1=α2+α3+α4 or α1+α2+α3+α4=0 cannot be solved in conjugates of a Pisot number α. We also show that the roots of the Siegel's polynomial x3−x−1 are the only solutions to the three term equation α1+α2+α3=0 in conjugates of a Pisot number. Finally, we prove that there exists no Pisot number whose conjugates satisfy the relation α1=α2+α3.
Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 935-950 |
Seitenumfang | 16 |
Fachzeitschrift | Mathematics of computation |
Jahrgang | 86.2017 |
Ausgabenummer | 304 |
Frühes Online-Datum | 13 Apr. 2013 |
Status | Veröffentlicht - März 2017 |