On certain multiples of Littlewood and Newman polynomials

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

Externe Organisationseinheiten

  • Vilnius University

Abstract

Polynomials with all the coefficients in {0,1} and constant term 1 are called Newman polynomials, whereas polynomials with all the coefficients in {−1,1} are called Littlewood polynomials. By exploiting an algorithm developed earlier, we determine the set of Littlewood polynomials of degree at most 12 which divide Newman polynomials. Moreover, we show that every Newman quadrinomial X^a+X^b+X^c+1, 15>a>b>c>0, has a Littlewood multiple of smallest possible degree which can be as large as 32765.

Details

OriginalspracheEnglisch
Seiten (von - bis)1491-1501
Seitenumfang11
FachzeitschriftTaehan-Suhakhoe-hoebo = Bulletin of the Korean Mathematical Society
Jahrgang55.2018
Ausgabenummer5
DOIs
StatusVeröffentlicht - 2018