Nanoscale stress distributions and microstructural changes at scratch track cross-sections of a deformed brittle-ductile CrN-Cr bilayer

Publikationen: Beitrag in FachzeitschriftArtikelForschung(peer-reviewed)

Autoren

  • Jakub Zalesak
  • Werner Ecker
  • Martin Rosenthal
  • S. Niese
  • P. Gawlitza
  • Hynek Hruby
  • Rostislav Daniel
  • Juraj Todt

Externe Organisationseinheiten

  • Erich-Schmid-Institut für Materialwissenschaft der Österreichischen Akademie der Wissenschaften
  • Materials Center Leoben Forschungs GmbH
  • European Synchrotron Radiation Facility
  • AXO Dresden GmbH
  • Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS
  • Voestalpine Eifeler Vacotec GmbH, Düsseldorf
  • Christian Doppler Labor für Hochentwickelte Synthese neuartiger multifunktionaler Schichten, Leoben

Abstract

In order to interpret the mechanical response of thin films subjected to scratch tests, it is necessary to elucidate local stress distributions and microstructural changes accompanying deformation across the scratch track area. Here, 50 nm synchrotron cross-sectional X-ray nanodiffraction and electron microscopy are used to characterize nanoscale multiaxial residual stress gradients and irreversible microstructural-morphological changes across a brittle-ductile film consisting of 1.2 and 2 μm thick CrN and Cr sublayers. The experimental results reveal a complex alternation of the original columnar grain microstructure and a formation of pronounced lateral and depth stress gradients, which are complemented by a finite element model. After scratching, steep gradients of in-plane, out-of-plane and shear stress distributions were revealed, ranging from −6 to 1.5 and − 1.5 to 1.5 GPa in CrN and Cr, respectively, which are furthermore correlated with microstructural changes and residual curvatures. The scratch test results in intergranular grain sliding and the formation of nanoscopic intragranular defects within CrN, while Cr sublayer's thickness reduction and pile-up formation are accompanied by a bending of columnar crystallites and localized plastic deformation. In summary, the quantitative stress data elucidate the stabilizing role of the Cr sublayer, which suppresses the bilayer's catastrophic fracture during scratch tests.

Details

OriginalspracheEnglisch
Aufsatznummer109023
Seitenumfang16
FachzeitschriftMaterials & design
Jahrgang195.2020
AusgabenummerOctober
DOIs
StatusVeröffentlicht - 5 Aug. 2020