In-situ investigation of the oxidation behavior of metastable CVD Ti1-xAlxN using a novel combination of synchrotron radiation XRD and DSC
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Standard
in: Surface & coatings technology, Jahrgang 374.2019, Nr. 25 September, 27.05.2019, S. 617-624.
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - In-situ investigation of the oxidation behavior of metastable CVD Ti1-xAlxN using a novel combination of synchrotron radiation XRD and DSC
AU - Saringer, Christian
AU - Tkadletz, Michael
AU - Stark, Andreas
AU - Schell, Norbert
AU - Czettl, Christoph
AU - Schalk, Nina
PY - 2019/5/27
Y1 - 2019/5/27
N2 - Ti 1-xAl xN hard coatings deposited by chemical vapor deposition (CVD) have attracted much attention recently due to their extraordinary nanolamellar microstructure and outstanding performance observed in metal cutting operations. Several published reports suggest further that CVD-Ti 1-xAl xN exhibits an increased thermal stability and high temperature oxidation resistance when compared to state-of-the-art physical vapor deposited Ti 1-xAl xN. However, the exact mechanisms underlying the oxidation of this coating system are not thoroughly understood yet. Thus within this work, the thermal stability and oxidation resistance of a powdered nanolamellar CVD-Ti 1-xAl xN coating have been investigated at the synchrotron radiation facility applying a novel in-situ experimental approach. The sample was annealed in air between 100 and 1400 °C and 2D X-ray diffraction patterns were recorded simultaneously with the differential scanning calorimetric signal. The obtained diffraction data was successively analyzed using sequential Rietveld refinement, yielding the temperature-dependent phase composition. By combining this method with the differential scanning calorimetric data, it was possible to precisely track the onset and progress of chemical reactions. The results show that the different phases present in the sample oxidize individually, with the oxidation stability strongly depending on the Al-content. Further it was found that when Ti 1-xAl xN spinodally decomposes in air, the formed TiN oxidizes directly after its formation while AlN retains its chemical stability. The present work provides not only a detailed insight into the thermal stability and oxidation resistance of CVD-Ti 1-xAl xN but also proves the outstanding ability of the used method for analyzing metastable coatings systems.
AB - Ti 1-xAl xN hard coatings deposited by chemical vapor deposition (CVD) have attracted much attention recently due to their extraordinary nanolamellar microstructure and outstanding performance observed in metal cutting operations. Several published reports suggest further that CVD-Ti 1-xAl xN exhibits an increased thermal stability and high temperature oxidation resistance when compared to state-of-the-art physical vapor deposited Ti 1-xAl xN. However, the exact mechanisms underlying the oxidation of this coating system are not thoroughly understood yet. Thus within this work, the thermal stability and oxidation resistance of a powdered nanolamellar CVD-Ti 1-xAl xN coating have been investigated at the synchrotron radiation facility applying a novel in-situ experimental approach. The sample was annealed in air between 100 and 1400 °C and 2D X-ray diffraction patterns were recorded simultaneously with the differential scanning calorimetric signal. The obtained diffraction data was successively analyzed using sequential Rietveld refinement, yielding the temperature-dependent phase composition. By combining this method with the differential scanning calorimetric data, it was possible to precisely track the onset and progress of chemical reactions. The results show that the different phases present in the sample oxidize individually, with the oxidation stability strongly depending on the Al-content. Further it was found that when Ti 1-xAl xN spinodally decomposes in air, the formed TiN oxidizes directly after its formation while AlN retains its chemical stability. The present work provides not only a detailed insight into the thermal stability and oxidation resistance of CVD-Ti 1-xAl xN but also proves the outstanding ability of the used method for analyzing metastable coatings systems.
UR - http://www.scopus.com/inward/record.url?scp=85067576091&partnerID=8YFLogxK
U2 - 10.1016/j.surfcoat.2019.05.072
DO - 10.1016/j.surfcoat.2019.05.072
M3 - Article
VL - 374.2019
SP - 617
EP - 624
JO - Surface & coatings technology
JF - Surface & coatings technology
SN - 0257-8972
IS - 25 September
ER -