In-situ investigation of the oxidation behavior of metastable CVD Ti1-xAlxN using a novel combination of synchrotron radiation XRD and DSC

Research output: Contribution to journalArticleResearchpeer-review

Standard

In-situ investigation of the oxidation behavior of metastable CVD Ti1-xAlxN using a novel combination of synchrotron radiation XRD and DSC. / Saringer, Christian; Tkadletz, Michael; Stark, Andreas et al.
In: Surface & coatings technology, Vol. 374.2019, No. 25 September, 27.05.2019, p. 617-624.

Research output: Contribution to journalArticleResearchpeer-review

Bibtex - Download

@article{512445943d574eb89ee96153d78614a6,
title = "In-situ investigation of the oxidation behavior of metastable CVD Ti1-xAlxN using a novel combination of synchrotron radiation XRD and DSC",
abstract = "Ti 1-xAl xN hard coatings deposited by chemical vapor deposition (CVD) have attracted much attention recently due to their extraordinary nanolamellar microstructure and outstanding performance observed in metal cutting operations. Several published reports suggest further that CVD-Ti 1-xAl xN exhibits an increased thermal stability and high temperature oxidation resistance when compared to state-of-the-art physical vapor deposited Ti 1-xAl xN. However, the exact mechanisms underlying the oxidation of this coating system are not thoroughly understood yet. Thus within this work, the thermal stability and oxidation resistance of a powdered nanolamellar CVD-Ti 1-xAl xN coating have been investigated at the synchrotron radiation facility applying a novel in-situ experimental approach. The sample was annealed in air between 100 and 1400 °C and 2D X-ray diffraction patterns were recorded simultaneously with the differential scanning calorimetric signal. The obtained diffraction data was successively analyzed using sequential Rietveld refinement, yielding the temperature-dependent phase composition. By combining this method with the differential scanning calorimetric data, it was possible to precisely track the onset and progress of chemical reactions. The results show that the different phases present in the sample oxidize individually, with the oxidation stability strongly depending on the Al-content. Further it was found that when Ti 1-xAl xN spinodally decomposes in air, the formed TiN oxidizes directly after its formation while AlN retains its chemical stability. The present work provides not only a detailed insight into the thermal stability and oxidation resistance of CVD-Ti 1-xAl xN but also proves the outstanding ability of the used method for analyzing metastable coatings systems. ",
author = "Christian Saringer and Michael Tkadletz and Andreas Stark and Norbert Schell and Christoph Czettl and Nina Schalk",
year = "2019",
month = may,
day = "27",
doi = "10.1016/j.surfcoat.2019.05.072",
language = "English",
volume = "374.2019",
pages = "617--624",
journal = "Surface & coatings technology",
issn = "0257-8972",
publisher = "Elsevier",
number = "25 September",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - In-situ investigation of the oxidation behavior of metastable CVD Ti1-xAlxN using a novel combination of synchrotron radiation XRD and DSC

AU - Saringer, Christian

AU - Tkadletz, Michael

AU - Stark, Andreas

AU - Schell, Norbert

AU - Czettl, Christoph

AU - Schalk, Nina

PY - 2019/5/27

Y1 - 2019/5/27

N2 - Ti 1-xAl xN hard coatings deposited by chemical vapor deposition (CVD) have attracted much attention recently due to their extraordinary nanolamellar microstructure and outstanding performance observed in metal cutting operations. Several published reports suggest further that CVD-Ti 1-xAl xN exhibits an increased thermal stability and high temperature oxidation resistance when compared to state-of-the-art physical vapor deposited Ti 1-xAl xN. However, the exact mechanisms underlying the oxidation of this coating system are not thoroughly understood yet. Thus within this work, the thermal stability and oxidation resistance of a powdered nanolamellar CVD-Ti 1-xAl xN coating have been investigated at the synchrotron radiation facility applying a novel in-situ experimental approach. The sample was annealed in air between 100 and 1400 °C and 2D X-ray diffraction patterns were recorded simultaneously with the differential scanning calorimetric signal. The obtained diffraction data was successively analyzed using sequential Rietveld refinement, yielding the temperature-dependent phase composition. By combining this method with the differential scanning calorimetric data, it was possible to precisely track the onset and progress of chemical reactions. The results show that the different phases present in the sample oxidize individually, with the oxidation stability strongly depending on the Al-content. Further it was found that when Ti 1-xAl xN spinodally decomposes in air, the formed TiN oxidizes directly after its formation while AlN retains its chemical stability. The present work provides not only a detailed insight into the thermal stability and oxidation resistance of CVD-Ti 1-xAl xN but also proves the outstanding ability of the used method for analyzing metastable coatings systems.

AB - Ti 1-xAl xN hard coatings deposited by chemical vapor deposition (CVD) have attracted much attention recently due to their extraordinary nanolamellar microstructure and outstanding performance observed in metal cutting operations. Several published reports suggest further that CVD-Ti 1-xAl xN exhibits an increased thermal stability and high temperature oxidation resistance when compared to state-of-the-art physical vapor deposited Ti 1-xAl xN. However, the exact mechanisms underlying the oxidation of this coating system are not thoroughly understood yet. Thus within this work, the thermal stability and oxidation resistance of a powdered nanolamellar CVD-Ti 1-xAl xN coating have been investigated at the synchrotron radiation facility applying a novel in-situ experimental approach. The sample was annealed in air between 100 and 1400 °C and 2D X-ray diffraction patterns were recorded simultaneously with the differential scanning calorimetric signal. The obtained diffraction data was successively analyzed using sequential Rietveld refinement, yielding the temperature-dependent phase composition. By combining this method with the differential scanning calorimetric data, it was possible to precisely track the onset and progress of chemical reactions. The results show that the different phases present in the sample oxidize individually, with the oxidation stability strongly depending on the Al-content. Further it was found that when Ti 1-xAl xN spinodally decomposes in air, the formed TiN oxidizes directly after its formation while AlN retains its chemical stability. The present work provides not only a detailed insight into the thermal stability and oxidation resistance of CVD-Ti 1-xAl xN but also proves the outstanding ability of the used method for analyzing metastable coatings systems.

UR - http://www.scopus.com/inward/record.url?scp=85067576091&partnerID=8YFLogxK

U2 - 10.1016/j.surfcoat.2019.05.072

DO - 10.1016/j.surfcoat.2019.05.072

M3 - Article

VL - 374.2019

SP - 617

EP - 624

JO - Surface & coatings technology

JF - Surface & coatings technology

SN - 0257-8972

IS - 25 September

ER -