Charakterisierung und Optimierung von La2Ni0.8Co0.2O4+δ als Luftelektrodenmaterial in Festoxid-Zellen
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Standard
2023.
Publikationen: Thesis / Studienabschlussarbeiten und Habilitationsschriften › Masterarbeit
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Charakterisierung und Optimierung von La2Ni0.8Co0.2O4+δ als Luftelektrodenmaterial in Festoxid-Zellen
AU - Plattner, Jakob
N1 - nicht gesperrt
PY - 2023
Y1 - 2023
N2 - Durch den fortschreitenden Ausbau erneuerbarer Stromerzeugungskapazitäten, wie z.B. der Windkraft oder Photovoltaik, entstehen aufgrund ihres volatilen Charakters vielseitige Herausforderungen. Wasserstoff, welcher mit hohen Wirkungsgraden und dem Einsatz von überschüssigem, erneuerbarem Strom durch Hochtemperaturelektrolyse in Festoxid-Zellen erzeugt werden kann, gilt als aussichtsreiches Speichermedium. In Phasen geringer erneuerbarer Stromerzeugung kann die in Wasserstoff bzw. dessen Derivaten gespeicherte Energie in Festoxid-Brennstoffzellen oder etablierten Energieerzeugungsanlagen, wie z.B. Gasturbinen oder Motoren, nutzbar gemacht werden.Im Rahmen dieser Arbeit wird das Seltenerdnickelat La2Ni0.8Co0.2O4+δ auf seine Eignung als Luftelektrodenmaterial in Festoxid-Zellen untersucht. Dafür werden symmetrische Festoxid-Zellen mittels elektrochemischer Impedanzspektroskopie (EIS) charakterisiert. Der Fokus dieser Arbeit liegt dabei auf der Variation der Sinterprogramme für die Herstellung der Elektrodenschichten, sowie der Optimierung des Mess-Setups für die Charakterisierung von insgesamt acht symmetrischen Festoxid-Zellen. Durch die Untersuchung des Zellzustandes nach der EIS (Post-Test Analysen), sowie der Untersuchung von Trends in den aufgenommenen Impedanzspektren, sollen Aussagen über die Degradation bzw. Stabilität, sowie die Oberflächenhaftung der Luftelektroden auf den Elektrolytsubstraten aus Gadolinium-dotiertem Ceroxid getroffen werden. Mittels Lichtmikroskop- und Rasterelektronenmikroskop (REM)-Aufnahmen der Zellen werden die Mikrostruktur und Morphologie der La2Ni0.8Co0.2O4+δ-Elektroden charakterisiert, und mit den Herstellungsparametern bzw. der elektrochemischen Leistungsfähigkeit in Beziehung gesetzt. Mit dem daraus abgeleiteten optimierten Sinterprogramm wurde eine anoden-gestützte Festoxid-Vollzelle angefertigt, welche durch Stromdichte/Spannungs-Kennlinien im Elektrolyse- und Brennstoffzellenmodus charakterisiert wurde. Weiters wurde der Einfluss von Setup-Modifikationen auf die elektrochemische Charakterisierung untersucht.Die Ergebnisse der Arbeit zeigen, dass die elektrochemische Leistungsfähigkeit sowie die Langzeitstabilität von symmetrischen Festoxid-Zellen durch das bei der Elektrodenpräparation verwendete Sinterprogramm stark beeinflusst werden. Für das Elektrodenmaterial La2Ni0.8Co0.2O4+δ wurde durch Optimierung des bisher für Seltenerdennickelate verwendeten Sinterprogrammes die Leistungsfähigkeit symmetrischer Zellen, bezogen auf den Polarisationswiderstand, um über 50 % verbessert. Diese Performanceverbesserungen wurden in den Stromdichte/Spannungs-Kennlinien der Festoxid-Vollzelle, welche ebenfalls mit abgeändertem Temperaturprogramm gesintert wurde, für den Elektrolysebetrieb validiert. Durch Interpretation der REM-Aufnahmen konnten weiters Beziehungen zwischen der Verbesserung der Zellperformance und der Optimierung der Mikrostruktur der Elektrodenschichten hergestellt werden.
AB - Durch den fortschreitenden Ausbau erneuerbarer Stromerzeugungskapazitäten, wie z.B. der Windkraft oder Photovoltaik, entstehen aufgrund ihres volatilen Charakters vielseitige Herausforderungen. Wasserstoff, welcher mit hohen Wirkungsgraden und dem Einsatz von überschüssigem, erneuerbarem Strom durch Hochtemperaturelektrolyse in Festoxid-Zellen erzeugt werden kann, gilt als aussichtsreiches Speichermedium. In Phasen geringer erneuerbarer Stromerzeugung kann die in Wasserstoff bzw. dessen Derivaten gespeicherte Energie in Festoxid-Brennstoffzellen oder etablierten Energieerzeugungsanlagen, wie z.B. Gasturbinen oder Motoren, nutzbar gemacht werden.Im Rahmen dieser Arbeit wird das Seltenerdnickelat La2Ni0.8Co0.2O4+δ auf seine Eignung als Luftelektrodenmaterial in Festoxid-Zellen untersucht. Dafür werden symmetrische Festoxid-Zellen mittels elektrochemischer Impedanzspektroskopie (EIS) charakterisiert. Der Fokus dieser Arbeit liegt dabei auf der Variation der Sinterprogramme für die Herstellung der Elektrodenschichten, sowie der Optimierung des Mess-Setups für die Charakterisierung von insgesamt acht symmetrischen Festoxid-Zellen. Durch die Untersuchung des Zellzustandes nach der EIS (Post-Test Analysen), sowie der Untersuchung von Trends in den aufgenommenen Impedanzspektren, sollen Aussagen über die Degradation bzw. Stabilität, sowie die Oberflächenhaftung der Luftelektroden auf den Elektrolytsubstraten aus Gadolinium-dotiertem Ceroxid getroffen werden. Mittels Lichtmikroskop- und Rasterelektronenmikroskop (REM)-Aufnahmen der Zellen werden die Mikrostruktur und Morphologie der La2Ni0.8Co0.2O4+δ-Elektroden charakterisiert, und mit den Herstellungsparametern bzw. der elektrochemischen Leistungsfähigkeit in Beziehung gesetzt. Mit dem daraus abgeleiteten optimierten Sinterprogramm wurde eine anoden-gestützte Festoxid-Vollzelle angefertigt, welche durch Stromdichte/Spannungs-Kennlinien im Elektrolyse- und Brennstoffzellenmodus charakterisiert wurde. Weiters wurde der Einfluss von Setup-Modifikationen auf die elektrochemische Charakterisierung untersucht.Die Ergebnisse der Arbeit zeigen, dass die elektrochemische Leistungsfähigkeit sowie die Langzeitstabilität von symmetrischen Festoxid-Zellen durch das bei der Elektrodenpräparation verwendete Sinterprogramm stark beeinflusst werden. Für das Elektrodenmaterial La2Ni0.8Co0.2O4+δ wurde durch Optimierung des bisher für Seltenerdennickelate verwendeten Sinterprogrammes die Leistungsfähigkeit symmetrischer Zellen, bezogen auf den Polarisationswiderstand, um über 50 % verbessert. Diese Performanceverbesserungen wurden in den Stromdichte/Spannungs-Kennlinien der Festoxid-Vollzelle, welche ebenfalls mit abgeändertem Temperaturprogramm gesintert wurde, für den Elektrolysebetrieb validiert. Durch Interpretation der REM-Aufnahmen konnten weiters Beziehungen zwischen der Verbesserung der Zellperformance und der Optimierung der Mikrostruktur der Elektrodenschichten hergestellt werden.
KW - Festoxid-Zelle
KW - Hochtemperaturelektrolyse
KW - SOEC
KW - Luftelektrode
KW - solid oxide cell
KW - high temperature electrolysis
KW - SOEC
KW - air electrode
U2 - 10.34901/mul.pub.2023.242
DO - 10.34901/mul.pub.2023.242
M3 - Masterarbeit
ER -