A quinary WTaCrVHf nanocrystalline refractory high-entropy alloy withholding extreme irradiation environments
Publikationen: Beitrag in Fachzeitschrift › Artikel › Forschung › (peer-reviewed)
Autoren
Externe Organisationseinheiten
- Los Alamos National Laboratory
- Auburn University at Montgomery
- Clemson University
- University of Wisconsin-Madison
- University of California, Berkeley
- Oak Ridge National Laboratory
- Argonne National Laboratory, Lemon
- Faculty of Materials Science and Engineering
- Warsaw University of Technology
- Britische Atomenergiebehörde
- Universität Oxford
- Middle East Technical University, Ankara
Abstract
In the quest of new materials that can withstand severe irradiation and mechanical extremes for advanced applications (e.g. fission & fusion reactors, space applications, etc.), design, prediction and control of advanced materials beyond current material designs become paramount. Here, through a combined experimental and simulation methodology, we design a nanocrystalline refractory high entropy alloy (RHEA) system. Compositions assessed under extreme environments and in situ electron-microscopy reveal both high thermal stability and radiation resistance. We observe grain refinement under heavy ion irradiation and resistance to dual-beam irradiation and helium implantation in the form of low defect generation and evolution, as well as no detectable grain growth. The experimental and modeling results—showing a good agreement—can be applied to design and rapidly assess other alloys subjected to extreme environmental conditions.
Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 2516 |
Seitenumfang | 12 |
Fachzeitschrift | Nature Communications |
Jahrgang | 2023 |
Ausgabenummer | 14 |
DOIs | |
Status | Veröffentlicht - 2 Mai 2023 |
Extern publiziert | Ja |