Using Deep Reinforcement Learning with Automatic Curriculum Learning for Mapless Navigation in Intralogistics
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- Institute of Neurogenetics
- Technology and Innovation
Abstract
We propose a deep reinforcement learning approach for solving a mapless navigation problem in warehouse scenarios. In our approach, an automatic guided vehicle is equipped with two LiDAR sensors and one frontal RGB camera and learns to perform a targeted navigation task. The challenges reside in the sparseness of positive samples for learning, multi-modal sensor perception with partial observability, the demand for accurate steering maneuvers together with long training cycles. To address these points, we propose NavACL-Q as an automatic curriculum learning method in combination with a distributed version of the soft actor-critic algorithm. The performance of the learning algorithm is evaluated exhaustively in a different warehouse environment to validate both robustness and generalizability of the learned policy. Results in NVIDIA Isaac Sim demonstrates that our trained agent significantly outperforms the map-based navigation pipeline provided by NVIDIA Isaac Sim with an increased agent-goal distance of 3 m and a wider initial relative agent-goal rotation of approximately 45∘. The ablation studies also suggest that NavACL-Q greatly facilitates the whole learning process with a performance gain of roughly 40% compared to training with random starts and a pre-trained feature extractor manifestly boosts the performance by approximately 60%.
Details
Original language | English |
---|---|
Article number | 3153 |
Number of pages | 30 |
Journal | Applied Sciences : open access journal |
Volume | 12.2022 |
Issue number | 6 |
DOIs | |
Publication status | Published - 19 Mar 2022 |