The Perceptron algorithm versus Winnow: Linear versus logarithmic mistake bounds when few input variables are relevant
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Artificial intelligence, Vol. 97, No. 1-2, 01.12.1997, p. 325-343.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - The Perceptron algorithm versus Winnow
T2 - Linear versus logarithmic mistake bounds when few input variables are relevant
AU - Kivinen, J.
AU - Warmuth, M. K.
AU - Auer, P.
PY - 1997/12/1
Y1 - 1997/12/1
KW - Linear threshold functions
KW - Mistake bounds
KW - Multiplicative updates
KW - Perceptron algorithm
KW - Relevant variables
UR - http://www.scopus.com/inward/record.url?scp=0031375503&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:0031375503
VL - 97
SP - 325
EP - 343
JO - Artificial intelligence
JF - Artificial intelligence
SN - 0004-3702
IS - 1-2
ER -