The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs
Research output: Contribution to journal › Article › Research › peer-review
Standard
The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs. / Kirschenhofer, Peter; Larcombe, Peter J.; Fennessey, Eric J.
In: Utilitas mathematica, Vol. 93, 2014, p. 3-23.
In: Utilitas mathematica, Vol. 93, 2014, p. 3-23.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
Kirschenhofer, P, Larcombe, PJ & Fennessey, EJ 2014, 'The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs', Utilitas mathematica, vol. 93, pp. 3-23.
APA
Kirschenhofer, P., Larcombe, P. J., & Fennessey, E. J. (2014). The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs. Utilitas mathematica, 93, 3-23.
Vancouver
Kirschenhofer P, Larcombe PJ, Fennessey EJ. The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs. Utilitas mathematica. 2014;93:3-23.
Author
Bibtex - Download
@article{71606f646d44422494c261dfaa1da9f8,
title = "The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs",
author = "Peter Kirschenhofer and Larcombe, {Peter J.} and Fennessey, {Eric J.}",
year = "2014",
language = "English",
volume = "93",
pages = "3--23",
journal = "Utilitas mathematica",
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs
AU - Kirschenhofer, Peter
AU - Larcombe, Peter J.
AU - Fennessey, Eric J.
PY - 2014
Y1 - 2014
M3 - Article
VL - 93
SP - 3
EP - 23
JO - Utilitas mathematica
JF - Utilitas mathematica
ER -