The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs

Research output: Contribution to journalArticleResearchpeer-review

Standard

The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs. / Kirschenhofer, Peter; Larcombe, Peter J.; Fennessey, Eric J.
In: Utilitas mathematica, Vol. 93, 2014, p. 3-23.

Research output: Contribution to journalArticleResearchpeer-review

Author

Kirschenhofer, Peter ; Larcombe, Peter J. ; Fennessey, Eric J. / The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs. In: Utilitas mathematica. 2014 ; Vol. 93. pp. 3-23.

Bibtex - Download

@article{71606f646d44422494c261dfaa1da9f8,
title = "The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs",
author = "Peter Kirschenhofer and Larcombe, {Peter J.} and Fennessey, {Eric J.}",
year = "2014",
language = "English",
volume = "93",
pages = "3--23",
journal = "Utilitas mathematica",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - The asymptotic form of the sum $sum_{i=0}^n i^p binom {n+i}i $: two proofs

AU - Kirschenhofer, Peter

AU - Larcombe, Peter J.

AU - Fennessey, Eric J.

PY - 2014

Y1 - 2014

M3 - Article

VL - 93

SP - 3

EP - 23

JO - Utilitas mathematica

JF - Utilitas mathematica

ER -