Synchrotron X-ray diffraction studies of bone structure and deformation
Research output: Thesis › Doctoral Thesis
Standard
2006. 145 p.
Research output: Thesis › Doctoral Thesis
Harvard
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Synchrotron X-ray diffraction studies of bone structure and deformation
AU - Wagermaier, Wolfgang
N1 - no embargo
PY - 2006
Y1 - 2006
N2 - Bone is a hierarchically structured fiber composite made of collagen fibrils, reinforced by embedded mineral nanoparticles. First, the structural organization of lamellar bone concentrically wrapped around a central blood vessel (osteons) was investigated using synchrotron X-ray diffraction. Using a specially developed texture analysis technique with a 1 m thin X-ray beam, it was shown that the mineralized collagen fibrils are spiraling around the central axis. This most likely imparts high extensibility to the structure and shows that strains inside the osteon are taken up by shear between the fibrils. Secondly, the deformation mechanism of fibrolamellar bone was investigated at 3 levels of structural hierarchy, by combining mechanical in-situ tensile tests with X-ray diffraction. Special tensile testing devices were designed for this study, enabling the simultaneous determination of the overall strain in native bone tissue, as well as the strains in collagen fibrils and mineral particles. It was shown that fibrils take up only a fraction of the total strain, while the partially mineralized interfibrillar matrix takes up the remaining strain by shearing. This highlights the mechanical importance of the interfibrillar matrix which until now did not attract much attention. Overall, the results of this thesis will improve the understanding of bone brittleness resulting from diseases and, in addition, point out design-principles for new synthetic composites.
AB - Bone is a hierarchically structured fiber composite made of collagen fibrils, reinforced by embedded mineral nanoparticles. First, the structural organization of lamellar bone concentrically wrapped around a central blood vessel (osteons) was investigated using synchrotron X-ray diffraction. Using a specially developed texture analysis technique with a 1 m thin X-ray beam, it was shown that the mineralized collagen fibrils are spiraling around the central axis. This most likely imparts high extensibility to the structure and shows that strains inside the osteon are taken up by shear between the fibrils. Secondly, the deformation mechanism of fibrolamellar bone was investigated at 3 levels of structural hierarchy, by combining mechanical in-situ tensile tests with X-ray diffraction. Special tensile testing devices were designed for this study, enabling the simultaneous determination of the overall strain in native bone tissue, as well as the strains in collagen fibrils and mineral particles. It was shown that fibrils take up only a fraction of the total strain, while the partially mineralized interfibrillar matrix takes up the remaining strain by shearing. This highlights the mechanical importance of the interfibrillar matrix which until now did not attract much attention. Overall, the results of this thesis will improve the understanding of bone brittleness resulting from diseases and, in addition, point out design-principles for new synthetic composites.
KW - bone
KW - structure
KW - X-ray diffraction
KW - texture
KW - in-situ
KW - tensile test
KW - deformation mechanism
KW - Knochen
KW - Struktur
KW - Textur
KW - Synchrotron
KW - Röntgenbeugung
KW - in-situ
KW - Zugversuch
KW - Verformungsmechanismus
M3 - Doctoral Thesis
ER -