Structural Investigation of Size Effects in Plasticity using Indentation Techniques

Research output: ThesisDoctoral Thesis

Bibtex - Download

@phdthesis{8286f89c02d648158ebc8b721637a20e,
title = "Structural Investigation of Size Effects in Plasticity using Indentation Techniques",
abstract = "It was found that contrary to the predictions of the classic continuum plasticity theory, the plastically deformed zone below nano-, micro- and macroindentations is not self-similar. Rather, different stages of deformation associated with varying sizes of the deformed regions were detected. Examining cross-sections through nanoindentations in copper by means of electron backscatter diffraction technique shows that different characteristic deformation patterns occur. For large nanoindentations a plastically deformed zone consisting of three characteristic regions is found, while for shallow ones only two sections appear. Due to these findings it can be assumed that a change in the deformation mechanism between large and shallow nanoindentations takes place. Analysis of the corresponding hardness data in terms of geometrically necessary dislocations using the Nix-Gao model supports the assumption of a mechanism change. To explain the observed behavior, two models based on possible dislocation arrangements are suggested and compared to the experimental findings. The model presented for large nanoindents is similar to the dislocation pile-up model explaining the Hall-Petch effect, while the model for shallow nanoindentations uses far-reaching dislocation loops to accommodate the indentation. The plastic deformation zone below microindentations can as well be divided into three characteristic regions. Noticeable is, that the dimension of the zone where significant changes of the orientation occur, is proportional to the size of the imprint. For macroindentations the plastically deformed zone consists of only two characteristic regions, showing a structure typical for low and medium deformed face-centered cubic single crystals of pure metals. With increasing load dislocation substructures, exhibiting orientation fluctuations in the micron regime, occur. Summarizing the microstructural results of all examined indentations it becomes apparent that the size of the indentations covers a wide range of the different scales of structural evolution, appearing during the deformation of a single crystal. It seems that the hardness of a material varies with the size of indentation, as the flow stress of a single crystal with the evolving substructure.",
keywords = "Gr{\"o}{\ss}eneffekt, Plastizit{\"a}t, Nanoh{\"a}rtemessung, Mikroh{\"a}rtemessung, Makroh{\"a}rtemessung, Elektronenr{\"u}ckstreutechnik, Nix-Gao Modell, Versetzungen, size effect, plasticity, nanoindentation, microindentation, macroindentation, electron backscatter diffraction technique, Nix-Gao model, dislocations",
author = "Rester, {Martin Leopold}",
note = "no embargo",
year = "2008",
language = "English",

}

RIS (suitable for import to EndNote) - Download

TY - BOOK

T1 - Structural Investigation of Size Effects in Plasticity using Indentation Techniques

AU - Rester, Martin Leopold

N1 - no embargo

PY - 2008

Y1 - 2008

N2 - It was found that contrary to the predictions of the classic continuum plasticity theory, the plastically deformed zone below nano-, micro- and macroindentations is not self-similar. Rather, different stages of deformation associated with varying sizes of the deformed regions were detected. Examining cross-sections through nanoindentations in copper by means of electron backscatter diffraction technique shows that different characteristic deformation patterns occur. For large nanoindentations a plastically deformed zone consisting of three characteristic regions is found, while for shallow ones only two sections appear. Due to these findings it can be assumed that a change in the deformation mechanism between large and shallow nanoindentations takes place. Analysis of the corresponding hardness data in terms of geometrically necessary dislocations using the Nix-Gao model supports the assumption of a mechanism change. To explain the observed behavior, two models based on possible dislocation arrangements are suggested and compared to the experimental findings. The model presented for large nanoindents is similar to the dislocation pile-up model explaining the Hall-Petch effect, while the model for shallow nanoindentations uses far-reaching dislocation loops to accommodate the indentation. The plastic deformation zone below microindentations can as well be divided into three characteristic regions. Noticeable is, that the dimension of the zone where significant changes of the orientation occur, is proportional to the size of the imprint. For macroindentations the plastically deformed zone consists of only two characteristic regions, showing a structure typical for low and medium deformed face-centered cubic single crystals of pure metals. With increasing load dislocation substructures, exhibiting orientation fluctuations in the micron regime, occur. Summarizing the microstructural results of all examined indentations it becomes apparent that the size of the indentations covers a wide range of the different scales of structural evolution, appearing during the deformation of a single crystal. It seems that the hardness of a material varies with the size of indentation, as the flow stress of a single crystal with the evolving substructure.

AB - It was found that contrary to the predictions of the classic continuum plasticity theory, the plastically deformed zone below nano-, micro- and macroindentations is not self-similar. Rather, different stages of deformation associated with varying sizes of the deformed regions were detected. Examining cross-sections through nanoindentations in copper by means of electron backscatter diffraction technique shows that different characteristic deformation patterns occur. For large nanoindentations a plastically deformed zone consisting of three characteristic regions is found, while for shallow ones only two sections appear. Due to these findings it can be assumed that a change in the deformation mechanism between large and shallow nanoindentations takes place. Analysis of the corresponding hardness data in terms of geometrically necessary dislocations using the Nix-Gao model supports the assumption of a mechanism change. To explain the observed behavior, two models based on possible dislocation arrangements are suggested and compared to the experimental findings. The model presented for large nanoindents is similar to the dislocation pile-up model explaining the Hall-Petch effect, while the model for shallow nanoindentations uses far-reaching dislocation loops to accommodate the indentation. The plastic deformation zone below microindentations can as well be divided into three characteristic regions. Noticeable is, that the dimension of the zone where significant changes of the orientation occur, is proportional to the size of the imprint. For macroindentations the plastically deformed zone consists of only two characteristic regions, showing a structure typical for low and medium deformed face-centered cubic single crystals of pure metals. With increasing load dislocation substructures, exhibiting orientation fluctuations in the micron regime, occur. Summarizing the microstructural results of all examined indentations it becomes apparent that the size of the indentations covers a wide range of the different scales of structural evolution, appearing during the deformation of a single crystal. It seems that the hardness of a material varies with the size of indentation, as the flow stress of a single crystal with the evolving substructure.

KW - Größeneffekt

KW - Plastizität

KW - Nanohärtemessung

KW - Mikrohärtemessung

KW - Makrohärtemessung

KW - Elektronenrückstreutechnik

KW - Nix-Gao Modell

KW - Versetzungen

KW - size effect

KW - plasticity

KW - nanoindentation

KW - microindentation

KW - macroindentation

KW - electron backscatter diffraction technique

KW - Nix-Gao model

KW - dislocations

M3 - Doctoral Thesis

ER -