Spontaneous Imbibition Oil Recovery by Natural Surfactant/Nanofluid: An Experimental and Theoretical Study
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Nanomaterials, Vol. 12.2022, No. 20, 3563, 12.10.2022.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Spontaneous Imbibition Oil Recovery by Natural Surfactant/Nanofluid: An Experimental and Theoretical Study
AU - Khoramian, Reza
AU - Kharrat, Riyaz
AU - Pourafshary, Peyman
AU - Golshokooh, Saeed
AU - Hashemi, Fatemeh
PY - 2022/10/12
Y1 - 2022/10/12
N2 - Organic surfactants have been utilized with different nanoparticles in enhanced oil recovery (EOR) operations due to the synergic mechanisms of nanofluid stabilization, wettability alteration, and oil-water interfacial tension reduction. However, investment and environmental issues are the main concerns to make the operation more practical. The present study introduces a natural and cost-effective surfactant named Azarboo for modifying the surface traits of silica nanoparticles for more efficient EOR. Surface-modified nanoparticles were synthesized by conjugating negatively charged Azarboo surfactant on positively charged amino-treated silica nanoparticles. The effect of the hybrid application of the natural surfactant and amine-modified silica nanoparticles was investigated by analysis of wettability alteration. Amine-surfactant-functionalized silica nanoparticles were found to be more effective than typical nanoparticles. Amott cell experiments showed maximum imbibition oil recovery after nine days of treatment with amine-surfactant-modified nanoparticles and fifteen days of treatment with amine-modified nanoparticles. This finding confirmed the superior potential of amine-surfactant-modified silica nanoparticles compared to amine-modified silica nanoparticles. Modeling showed that amine surfactant-treated SiO2 could change wettability from strongly oil-wet to almost strongly water-wet. In the case of amine-treated silica nanoparticles, a strongly water-wet condition was not achieved. Oil displacement experiments confirmed the better performance of amine-surfactant-treated SiO2 nanoparticles compared to amine-treated SiO2 by improving oil recovery by 15%. Overall, a synergistic effect between Azarboo surfactant and amine-modified silica nanoparticles led to wettability alteration and higher oil recovery.
AB - Organic surfactants have been utilized with different nanoparticles in enhanced oil recovery (EOR) operations due to the synergic mechanisms of nanofluid stabilization, wettability alteration, and oil-water interfacial tension reduction. However, investment and environmental issues are the main concerns to make the operation more practical. The present study introduces a natural and cost-effective surfactant named Azarboo for modifying the surface traits of silica nanoparticles for more efficient EOR. Surface-modified nanoparticles were synthesized by conjugating negatively charged Azarboo surfactant on positively charged amino-treated silica nanoparticles. The effect of the hybrid application of the natural surfactant and amine-modified silica nanoparticles was investigated by analysis of wettability alteration. Amine-surfactant-functionalized silica nanoparticles were found to be more effective than typical nanoparticles. Amott cell experiments showed maximum imbibition oil recovery after nine days of treatment with amine-surfactant-modified nanoparticles and fifteen days of treatment with amine-modified nanoparticles. This finding confirmed the superior potential of amine-surfactant-modified silica nanoparticles compared to amine-modified silica nanoparticles. Modeling showed that amine surfactant-treated SiO2 could change wettability from strongly oil-wet to almost strongly water-wet. In the case of amine-treated silica nanoparticles, a strongly water-wet condition was not achieved. Oil displacement experiments confirmed the better performance of amine-surfactant-treated SiO2 nanoparticles compared to amine-treated SiO2 by improving oil recovery by 15%. Overall, a synergistic effect between Azarboo surfactant and amine-modified silica nanoparticles led to wettability alteration and higher oil recovery.
KW - Natural surfactants
KW - Nanoparticle
KW - spontaneous imbibition
KW - mathematical modeling
KW - enhanced oil recovery
U2 - 10.3390/nano12203563
DO - 10.3390/nano12203563
M3 - Article
VL - 12.2022
JO - Nanomaterials
JF - Nanomaterials
SN - 2079-4991
IS - 20
M1 - 3563
ER -