Single Crystalline 2D Material Nanoribbon Networks: Optical and Electrical Properties
Research output: Thesis › Doctoral Thesis
Standard
2024.
Research output: Thesis › Doctoral Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Single Crystalline 2D Material Nanoribbon Networks
T2 - Optical and Electrical Properties
AU - Aslam, Muhammad Awais
N1 - no embargo
PY - 2024
Y1 - 2024
N2 - Two-dimensional (2D) material nanoribbons offer vast opportunities ranging from next generation quantum electronics to enhanced sensing. However, the existing fabrication routes are mostly restricted to graphene nanoribbons where the majority of methods rely on solution processed nanoribbons which hinders their integration into devices. Methods opted for the fabrication of other 2D material nanoribbons do not offer sufficient quality, yield, and control over the nanoribbons¿ edge terminations. This has been a bottleneck in the experimental studies of nanoribbons to explore their electrical and optical properties. This work aims to propose a universal approach to synthesize networks of nanoribbons from arbitrary 2D materials while maintaining high crystallinity, narrow size distribution, and straightforward device integrability. Moreover, the resulting devices do not suffer from junction resistance issues. This is supported by in-operando Kelvin Probe Force Microscopy of nanoribbon field effect transistors (FETs). The single crystalline nature of the nanoribbons is verified by Raman spectroscopy. By relying on self-aligning organic nanostructures as masks, the possibility of controlling the predominant crystallographic direction of the nanoribbon¿s edges is also demonstrated. Electrical characterization shows record charge carrier mobilities and very high ON-currents despite extreme width scaling. Particularly, for graphene nanoribbons a well-defined and highly controllable system of hexagonal boron nitride encapsulated graphene nanoribbon networks with water terminated edges is also presented. The system exhibits a robust hysteresis of the remnant dipolar fields, which affect and modulate the conductivity of graphene nanoribbon networks. So far, such ambipolar behaviour in graphene nanoribbons has been only predicted theoretically. The undertaken experimental approach sheds light on the mechanisms governing the ferroelectric behavior in graphene nanoribbons and supports it theoretically via molecular dynamic simulations. This offers insights for the design of ferroelectric heterostructures and neuromorphic circuits. Lastly, the thesis presents all van-der-Waals semiconducting PtSe2 field effect transistors with high-performance transport characteristics. PtSe2 is proposed as an alternative channel material below thicknesses of 4 nm, a critical thickness limit below which Si electronics performance start to deteriorate. The work is also inspired by the need to address the challenges faced for the co-integration of 2D materials into back end of line processes used in Silicon technology.
AB - Two-dimensional (2D) material nanoribbons offer vast opportunities ranging from next generation quantum electronics to enhanced sensing. However, the existing fabrication routes are mostly restricted to graphene nanoribbons where the majority of methods rely on solution processed nanoribbons which hinders their integration into devices. Methods opted for the fabrication of other 2D material nanoribbons do not offer sufficient quality, yield, and control over the nanoribbons¿ edge terminations. This has been a bottleneck in the experimental studies of nanoribbons to explore their electrical and optical properties. This work aims to propose a universal approach to synthesize networks of nanoribbons from arbitrary 2D materials while maintaining high crystallinity, narrow size distribution, and straightforward device integrability. Moreover, the resulting devices do not suffer from junction resistance issues. This is supported by in-operando Kelvin Probe Force Microscopy of nanoribbon field effect transistors (FETs). The single crystalline nature of the nanoribbons is verified by Raman spectroscopy. By relying on self-aligning organic nanostructures as masks, the possibility of controlling the predominant crystallographic direction of the nanoribbon¿s edges is also demonstrated. Electrical characterization shows record charge carrier mobilities and very high ON-currents despite extreme width scaling. Particularly, for graphene nanoribbons a well-defined and highly controllable system of hexagonal boron nitride encapsulated graphene nanoribbon networks with water terminated edges is also presented. The system exhibits a robust hysteresis of the remnant dipolar fields, which affect and modulate the conductivity of graphene nanoribbon networks. So far, such ambipolar behaviour in graphene nanoribbons has been only predicted theoretically. The undertaken experimental approach sheds light on the mechanisms governing the ferroelectric behavior in graphene nanoribbons and supports it theoretically via molecular dynamic simulations. This offers insights for the design of ferroelectric heterostructures and neuromorphic circuits. Lastly, the thesis presents all van-der-Waals semiconducting PtSe2 field effect transistors with high-performance transport characteristics. PtSe2 is proposed as an alternative channel material below thicknesses of 4 nm, a critical thickness limit below which Si electronics performance start to deteriorate. The work is also inspired by the need to address the challenges faced for the co-integration of 2D materials into back end of line processes used in Silicon technology.
KW - Nanobänder
KW - Ferroelektrizität
KW - 2D Materialien
KW - KPFM
KW - Feldeffekt-Transistoren
KW - Nanoribbons
KW - Ferroelectricity
KW - 2D Materials
KW - KPFM
KW - Field Effect transistors
U2 - 10.34901/mul.pub.2024.130
DO - 10.34901/mul.pub.2024.130
M3 - Doctoral Thesis
ER -