Requirements for the energy-optimal transformation of the european energy system
Research output: Thesis › Master's Thesis
Standard
2023.
Research output: Thesis › Master's Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Requirements for the energy-optimal transformation of the european energy system
AU - Bolocan, Daniel
N1 - no embargo
PY - 2023
Y1 - 2023
N2 - The European Union aims to assume a global leadership role in transforming the energy system towards climate neutrality. To achieve this objective, the EU has developed a comprehensive plan that all member states must follow. This guidance is provided by the European Green Deal. To manage the transition from fossil fuels towards Renewable energy sources (RES) an increase in the installation of the RES must be made as well as improvements in the applied technologies must occur. This thesis analysis the current energy system using an exergy-based approach. Therefore, is possible to determine the best technological portfolio in order to increase the efficiency of the entire system. This work analysis the supply-side, namely the power generation from RES as well as the final exergy application for different technologies. It also considers two different scenarios for the supply side. The first scenario represents a constant evolution of renewable energy sources, and the second scenario represents a progressive development. The methodology describes the steps done in order to determine the useful exergy demand for different technologies. The optimization environment oemof together with a greenfield approach enabled the representation of the future exergy system of the EU in 2050. The results of this work indicate that to achieve the stated goals by the EU a progressive approach in the installation of RES must be implemented. Moreover, climate neutrality will be achieved if renewable gases are produced or used. The results show that the future energy system is highly dependent on gas imports. The amount of gas imported doubled compared to 2019 reaching 8294 TWh per year. The highest impact on the overall efficiency is given by the transport sector (26 %) as well as the process heat supply at high temperatures (32 %). The reason is the increased heat utilization and the application of heat pumps. On the other side, in the transport sector is the usage of electric vehicles and fuel cells. From an exergetic point of view, the excess electricity due to the residual loads is utilized to charge the Batterie electric vehicles (BEV) as well as to produce H2 via electrolysis. On the other hand, the massive expansion of heat pumps also increases the efficiency of the system. The heat pump demands less electricity to increase the operating temperatures. The results indicate that the future energy system consists of two central heating grids that operate at 34°C and 90°C and a decentral grid operating at 150°C Therefore, due to these grids, the implementation of energy cascades is possible which also increases the overall efficiency. Due to all these technologies, the electrification degree is raised. The results also indicate that the overall efficiency of the EU can increase by 23 - 32 % compared to the status quo.
AB - The European Union aims to assume a global leadership role in transforming the energy system towards climate neutrality. To achieve this objective, the EU has developed a comprehensive plan that all member states must follow. This guidance is provided by the European Green Deal. To manage the transition from fossil fuels towards Renewable energy sources (RES) an increase in the installation of the RES must be made as well as improvements in the applied technologies must occur. This thesis analysis the current energy system using an exergy-based approach. Therefore, is possible to determine the best technological portfolio in order to increase the efficiency of the entire system. This work analysis the supply-side, namely the power generation from RES as well as the final exergy application for different technologies. It also considers two different scenarios for the supply side. The first scenario represents a constant evolution of renewable energy sources, and the second scenario represents a progressive development. The methodology describes the steps done in order to determine the useful exergy demand for different technologies. The optimization environment oemof together with a greenfield approach enabled the representation of the future exergy system of the EU in 2050. The results of this work indicate that to achieve the stated goals by the EU a progressive approach in the installation of RES must be implemented. Moreover, climate neutrality will be achieved if renewable gases are produced or used. The results show that the future energy system is highly dependent on gas imports. The amount of gas imported doubled compared to 2019 reaching 8294 TWh per year. The highest impact on the overall efficiency is given by the transport sector (26 %) as well as the process heat supply at high temperatures (32 %). The reason is the increased heat utilization and the application of heat pumps. On the other side, in the transport sector is the usage of electric vehicles and fuel cells. From an exergetic point of view, the excess electricity due to the residual loads is utilized to charge the Batterie electric vehicles (BEV) as well as to produce H2 via electrolysis. On the other hand, the massive expansion of heat pumps also increases the efficiency of the system. The heat pump demands less electricity to increase the operating temperatures. The results indicate that the future energy system consists of two central heating grids that operate at 34°C and 90°C and a decentral grid operating at 150°C Therefore, due to these grids, the implementation of energy cascades is possible which also increases the overall efficiency. Due to all these technologies, the electrification degree is raised. The results also indicate that the overall efficiency of the EU can increase by 23 - 32 % compared to the status quo.
KW - Exergie
KW - erneuerbare Energieträger
KW - Primärexergieverbrauch
KW - europäisches Energiesystem
KW - exergiebasierter Ansatz
KW - Energieeffizienz
KW - exergy
KW - renewable energy sources
KW - primary exergy consumption
KW - European energy system
KW - exergy-based approach
KW - energy efficiency
U2 - 10.34901/mul.pub.2023.127
DO - 10.34901/mul.pub.2023.127
M3 - Master's Thesis
ER -