Probing local adhesion: A miniaturized multi-photon lithography design demonstrated on silanized vs. Untreated surfaces
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Materials and Design, Vol. 242.2024, No. June, 112994, 06.2024.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Probing local adhesion: A miniaturized multi-photon lithography design demonstrated on silanized vs. Untreated surfaces
AU - Jelinek, Alexander
AU - Rossegger, Elisabeth
AU - Schlögl, Sandra
AU - Kiener, Daniel
AU - Alfreider, Markus
N1 - Publisher Copyright: © 2024
PY - 2024/6
Y1 - 2024/6
N2 - As multi-photon lithography technology matures, advanced integrated device design concepts become possible, positioned onto small surfaces, such as optical fibres. Only local adhesion anchors the printed object on the surface and ensure proper print-development without structure loss and long-term usability. Although surface treatments such as silanization are well known to considerably increase adhesion strength, quantification of adhesion is not straightforward and commonly assessed indirectly by surface characteristics and technological methods. The present work aims to quantify adhesion on a micrometer scale through SEM in situ tension experiments, that utilize a newly developed specimen geometry. Multiple specimens, with various footprints, were manufactured on both silanized and untreated fused silica substrates, allowing the comparable quantification of adhesion stresses between different surface conditions. Specimens on an untreated substrate failed with a high scatter in detaching force, whereas specimens on a silanized substrate tend to fail within the photoresist, either at the gauge section or just above the substrate, rather than at the interface itself. Thus, the adhesion stress was increased at least by a factor of 1.4 by the silanization treatment. Generally, a novel approach was developed, that can quantify local adhesions properties in realistic packaging or integrated circuits.
AB - As multi-photon lithography technology matures, advanced integrated device design concepts become possible, positioned onto small surfaces, such as optical fibres. Only local adhesion anchors the printed object on the surface and ensure proper print-development without structure loss and long-term usability. Although surface treatments such as silanization are well known to considerably increase adhesion strength, quantification of adhesion is not straightforward and commonly assessed indirectly by surface characteristics and technological methods. The present work aims to quantify adhesion on a micrometer scale through SEM in situ tension experiments, that utilize a newly developed specimen geometry. Multiple specimens, with various footprints, were manufactured on both silanized and untreated fused silica substrates, allowing the comparable quantification of adhesion stresses between different surface conditions. Specimens on an untreated substrate failed with a high scatter in detaching force, whereas specimens on a silanized substrate tend to fail within the photoresist, either at the gauge section or just above the substrate, rather than at the interface itself. Thus, the adhesion stress was increased at least by a factor of 1.4 by the silanization treatment. Generally, a novel approach was developed, that can quantify local adhesions properties in realistic packaging or integrated circuits.
KW - Multi-photon lithography
KW - Adhesion
KW - Tensile specimen
KW - Micromechanics
KW - Photoresist
UR - http://www.scopus.com/inward/record.url?scp=85192173098&partnerID=8YFLogxK
U2 - 10.1016/j.matdes.2024.112994
DO - 10.1016/j.matdes.2024.112994
M3 - Article
VL - 242.2024
JO - Materials and Design
JF - Materials and Design
SN - 0264-1275
IS - June
M1 - 112994
ER -