Potential eutectic accumulation in single crystal turbine blade due to geometry effect: a numerical study

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Standard

Potential eutectic accumulation in single crystal turbine blade due to geometry effect: a numerical study. / Zhang, H J; Liu, X S; Ma, D X et al.
IOP Conference Series: Materials Science and Engineering. 2023.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Vancouver

Zhang HJ, Liu XS, Ma DX, Ludwig A, Kharicha A, Wu MH. Potential eutectic accumulation in single crystal turbine blade due to geometry effect: a numerical study. In IOP Conference Series: Materials Science and Engineering. 2023 doi: 10.1088/1757-899x/1274/1/012026

Author

Zhang, H J ; Liu, X S ; Ma, D X et al. / Potential eutectic accumulation in single crystal turbine blade due to geometry effect: a numerical study. IOP Conference Series: Materials Science and Engineering. 2023.

Bibtex - Download

@inproceedings{48d593c2809b4d9da9d020e05f14a1ba,
title = "Potential eutectic accumulation in single crystal turbine blade due to geometry effect: a numerical study",
abstract = "Inhomogeneous distribution of the eutectic phase in single crystal (SC) turbine blades is detrimental to its mechanical properties. In a recent publication, it was reported that an accumulation of eutectics was observed on the upper surface of solidification units (e.g. shroud of a turbine blade), whereas fewer eutectics were detected at the bottom. This kind of casting defect brings a huge challenge to the production of turbine blades since the accumulated eutectics cannot be dissolved completely by heat treatment. A sample with three pairs of platforms/shrouds was designed to study the geometry effect on eutectic accumulation. In the current study, the simulation was performed by coupling ProCAST with our previously developed multiphase volume-average solidification model. In the first step, the thermal field including radiation in the furnace and heat conductivity in the casing and mould was calculated via ProCAST. Then, the obtained temperature profiles were set as thermal boundary conditions of the casting to predict the eutectic accumulation and formation of freckles. Based on the simulation results, convective plumes arising from the thermosolutal buoyancy transport solute-enriched liquid upward, which causes the solute pile-up and the final eutectic accumulation at the top surface in each platform. Freckles accompanied with eutectic accumulation was also observed at the corner of the sample. The calculated inhomogeneous distribution of the eutectics agrees well with experimental observations. Knowledge about the geometrical effect on eutectic accumulation is extended.",
author = "Zhang, {H J} and Liu, {X S} and Ma, {D X} and A Ludwig and A Kharicha and Wu, {M H}",
year = "2023",
month = jan,
day = "1",
doi = "10.1088/1757-899x/1274/1/012026",
language = "Undefined/Unknown",
booktitle = "IOP Conference Series: Materials Science and Engineering",

}

RIS (suitable for import to EndNote) - Download

TY - GEN

T1 - Potential eutectic accumulation in single crystal turbine blade due to geometry effect: a numerical study

AU - Zhang, H J

AU - Liu, X S

AU - Ma, D X

AU - Ludwig, A

AU - Kharicha, A

AU - Wu, M H

PY - 2023/1/1

Y1 - 2023/1/1

N2 - Inhomogeneous distribution of the eutectic phase in single crystal (SC) turbine blades is detrimental to its mechanical properties. In a recent publication, it was reported that an accumulation of eutectics was observed on the upper surface of solidification units (e.g. shroud of a turbine blade), whereas fewer eutectics were detected at the bottom. This kind of casting defect brings a huge challenge to the production of turbine blades since the accumulated eutectics cannot be dissolved completely by heat treatment. A sample with three pairs of platforms/shrouds was designed to study the geometry effect on eutectic accumulation. In the current study, the simulation was performed by coupling ProCAST with our previously developed multiphase volume-average solidification model. In the first step, the thermal field including radiation in the furnace and heat conductivity in the casing and mould was calculated via ProCAST. Then, the obtained temperature profiles were set as thermal boundary conditions of the casting to predict the eutectic accumulation and formation of freckles. Based on the simulation results, convective plumes arising from the thermosolutal buoyancy transport solute-enriched liquid upward, which causes the solute pile-up and the final eutectic accumulation at the top surface in each platform. Freckles accompanied with eutectic accumulation was also observed at the corner of the sample. The calculated inhomogeneous distribution of the eutectics agrees well with experimental observations. Knowledge about the geometrical effect on eutectic accumulation is extended.

AB - Inhomogeneous distribution of the eutectic phase in single crystal (SC) turbine blades is detrimental to its mechanical properties. In a recent publication, it was reported that an accumulation of eutectics was observed on the upper surface of solidification units (e.g. shroud of a turbine blade), whereas fewer eutectics were detected at the bottom. This kind of casting defect brings a huge challenge to the production of turbine blades since the accumulated eutectics cannot be dissolved completely by heat treatment. A sample with three pairs of platforms/shrouds was designed to study the geometry effect on eutectic accumulation. In the current study, the simulation was performed by coupling ProCAST with our previously developed multiphase volume-average solidification model. In the first step, the thermal field including radiation in the furnace and heat conductivity in the casing and mould was calculated via ProCAST. Then, the obtained temperature profiles were set as thermal boundary conditions of the casting to predict the eutectic accumulation and formation of freckles. Based on the simulation results, convective plumes arising from the thermosolutal buoyancy transport solute-enriched liquid upward, which causes the solute pile-up and the final eutectic accumulation at the top surface in each platform. Freckles accompanied with eutectic accumulation was also observed at the corner of the sample. The calculated inhomogeneous distribution of the eutectics agrees well with experimental observations. Knowledge about the geometrical effect on eutectic accumulation is extended.

UR - http://dx.doi.org/10.1088/1757-899x/1274/1/012026

U2 - 10.1088/1757-899x/1274/1/012026

DO - 10.1088/1757-899x/1274/1/012026

M3 - Conference contribution

BT - IOP Conference Series: Materials Science and Engineering

ER -