Overview on aluminium alloys as sinks for end-of-life vehicle scrap
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: IOP Conference Series: Materials Science and Engineering, 01.10.2024.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Overview on aluminium alloys as sinks for end-of-life vehicle scrap
AU - Pogatscher, Stefan
AU - Samberger, Sebastian
PY - 2024/10/1
Y1 - 2024/10/1
N2 - A fundamental principle in metallurgy is that the higher the purity of metals and alloys, the more favourable their properties will be. However, as the recycling of materials in production becomes increasingly significant, the levels of impurities are also on the rise. In the case of aluminium, the consequences can be detrimental due to the low solubility of most elements in this metal, which leads to the formation of brittle intermetallic phases (IMPs). Moreover, once impurities have entered aluminium, it is difficult to remove them. In 2017, almost 100 million cars were produced worldwide. Historically, vehicle design prioritised performance, resulting in a multi-material mix to utilise the best materials for each application. This included over 40 different wrought and cast aluminium alloys, Cu-based materials for electrics, and steels for high-strength applications. In the recycling of end-of-life vehicles (ELVs), high purity wrought Al alloys are today down-cycled to low purity cast engine blocks. However, recent advancements show that the drawback of increase IMP-fractions can be turned into benefits through the strategic design of heterostructured alloys. A first successful alloy example from this approach enables interesting forming properties, previously only found in 5xxx series wrought aluminium alloys, in combination with a matrix composition and age-hardening potential known from 6xxx series wrought aluminium alloys. A second examples reviews compositions directly resulting from ELV scrap. By manipulating IMPs it is feasible to create heterostructures with an interesting balance of strength and ductility. These approaches challenge traditional views, allowing for a greater volume fraction of intermetallic phases. Understanding the formation and role of intermetallic particles is crucial. This work gives an overview to the current problem and the state of the art and addressed the potential of upcycled aluminium alloys that tolerate high impurity levels by using intermetallic phases as impurity sinks.
AB - A fundamental principle in metallurgy is that the higher the purity of metals and alloys, the more favourable their properties will be. However, as the recycling of materials in production becomes increasingly significant, the levels of impurities are also on the rise. In the case of aluminium, the consequences can be detrimental due to the low solubility of most elements in this metal, which leads to the formation of brittle intermetallic phases (IMPs). Moreover, once impurities have entered aluminium, it is difficult to remove them. In 2017, almost 100 million cars were produced worldwide. Historically, vehicle design prioritised performance, resulting in a multi-material mix to utilise the best materials for each application. This included over 40 different wrought and cast aluminium alloys, Cu-based materials for electrics, and steels for high-strength applications. In the recycling of end-of-life vehicles (ELVs), high purity wrought Al alloys are today down-cycled to low purity cast engine blocks. However, recent advancements show that the drawback of increase IMP-fractions can be turned into benefits through the strategic design of heterostructured alloys. A first successful alloy example from this approach enables interesting forming properties, previously only found in 5xxx series wrought aluminium alloys, in combination with a matrix composition and age-hardening potential known from 6xxx series wrought aluminium alloys. A second examples reviews compositions directly resulting from ELV scrap. By manipulating IMPs it is feasible to create heterostructures with an interesting balance of strength and ductility. These approaches challenge traditional views, allowing for a greater volume fraction of intermetallic phases. Understanding the formation and role of intermetallic particles is crucial. This work gives an overview to the current problem and the state of the art and addressed the potential of upcycled aluminium alloys that tolerate high impurity levels by using intermetallic phases as impurity sinks.
UR - http://dx.doi.org/10.1088/1757-899x/1315/1/012008
U2 - 10.1088/1757-899x/1315/1/012008
DO - 10.1088/1757-899x/1315/1/012008
M3 - Article
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
SN - 1757-8981
ER -