Numerische Modellierungsstrategien von schalenmodellbasierten Schweißverbindungen
Research output: Thesis › Master's Thesis
Standard
2019.
Research output: Thesis › Master's Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Numerische Modellierungsstrategien von schalenmodellbasierten Schweißverbindungen
AU - Bittendorfer, Martin
N1 - gesperrt bis 05-04-2024
PY - 2019
Y1 - 2019
N2 - Um den Modellierungs- und Berechnungsaufwand für geschweißte Tragwerksstrukturen in einem wirtschaftlich vertretbaren Bereich zu halten, ist es zielführend, diese mit 2D-Schalenelementen zu modellieren. Ziel dieser Masterarbeit ist es, einen methodischen Ansatz für eine strukturspannungsbasierte multiaxiale Beurteilung von Schweißverbindungen anhand von Finite-Elemente-Schalenmodellen zu finden. Im Rahmen einer numerischen Simulationsstudie wurden zunächst schalenbasierte Modelle mit unterschiedlichen Last- und Randbedingungen sowie unterschiedlich fein modellierten Netzen aufgebaut. Zur methodischen Konzeptfindung wurden verschiedene knoten- und elementbasierte Ansätze der Spannungsauswertung berücksichtigt und gereiht. Das erarbeitete Konzept „K1-NK-Center“ basiert auf einer Auswertung der Element Center-Spannungen am nächstliegenden, ersten Element der Schweißverbindung. Die zu verwendende Elementgröße entspricht der Blechdicke des Anschlussblechs. Die Bewertung erfolgt nach dem Nennspannungskonzept, wobei die Auswertung der Spannungskomponente auf Schweißnahtseite als Superposition von Membran- und Biegespannung erfolgt. Dieses Konzept wurde verschiedenen Strukturspannungskonzepten mit Oberflächenlinearisierung gegenübergestellt. Dabei wurden sowohl Methoden für eine punktuelle als auch extrapolierende Strukturspannungsermittlung in Betracht gezogen. Die Auswertung der Validierungsergebnisse ergab stets konservative Bemessungsergebnisse in den ertragbaren Dauerfestigkeiten, wobei die Abweichung zu den publizierten Strukturspannungskonzepten im Durchschnitt weniger als 10% beträgt. Zusätzlich wurde bei allen betrachteten Konzepten ebenfalls der Einfluss der Blechdicke evaluiert, welcher bei Dünnblechen mit Blechdicken kleiner als 25mm als erhöhender Faktor herangezogen werden kann. Unter Berücksichtigung des Blechdickenfaktors konnten die, zuvor bis zu 40% konservativen, Ergebnisse an die geprüften Festigkeitswerte angepasst werden. Zusätzlich wurden auch vergleichende Berechnungen an multiaxial beanspruchten Proben bzw. Bauteilen vorgenommen. Die multiaxiale Auswertung liefert tendenziell konservative Ergebnisse, wobei für die untersuchten Bauteile die Berechnung nach IIW jener der FKM vorzuziehen ist. Nach der FKM Richtlinie ergeben sich etwa fünfzig Prozent geringere Lebensdauerwerte für die angewandte Strukturspannungsberechnung als nach der IIW. Im Zuge dieser Arbeit konnte eine Modellierungs- und Auswerteempfehlung festgelegt werden, mit der eine einheitliche Beurteilung von Schweißverbindungen nach dem Nennspannungskonzept, anhand von Finite Elemente Schalenmodellen, ermöglicht wird. Dies stellt die Voraussetzung für eine normgerechte, multiaxiale Bauteilauslegung geschweißter Strukturen nach Eurocode 3 bzw. der FKM-Richtlinie dar.
AB - Um den Modellierungs- und Berechnungsaufwand für geschweißte Tragwerksstrukturen in einem wirtschaftlich vertretbaren Bereich zu halten, ist es zielführend, diese mit 2D-Schalenelementen zu modellieren. Ziel dieser Masterarbeit ist es, einen methodischen Ansatz für eine strukturspannungsbasierte multiaxiale Beurteilung von Schweißverbindungen anhand von Finite-Elemente-Schalenmodellen zu finden. Im Rahmen einer numerischen Simulationsstudie wurden zunächst schalenbasierte Modelle mit unterschiedlichen Last- und Randbedingungen sowie unterschiedlich fein modellierten Netzen aufgebaut. Zur methodischen Konzeptfindung wurden verschiedene knoten- und elementbasierte Ansätze der Spannungsauswertung berücksichtigt und gereiht. Das erarbeitete Konzept „K1-NK-Center“ basiert auf einer Auswertung der Element Center-Spannungen am nächstliegenden, ersten Element der Schweißverbindung. Die zu verwendende Elementgröße entspricht der Blechdicke des Anschlussblechs. Die Bewertung erfolgt nach dem Nennspannungskonzept, wobei die Auswertung der Spannungskomponente auf Schweißnahtseite als Superposition von Membran- und Biegespannung erfolgt. Dieses Konzept wurde verschiedenen Strukturspannungskonzepten mit Oberflächenlinearisierung gegenübergestellt. Dabei wurden sowohl Methoden für eine punktuelle als auch extrapolierende Strukturspannungsermittlung in Betracht gezogen. Die Auswertung der Validierungsergebnisse ergab stets konservative Bemessungsergebnisse in den ertragbaren Dauerfestigkeiten, wobei die Abweichung zu den publizierten Strukturspannungskonzepten im Durchschnitt weniger als 10% beträgt. Zusätzlich wurde bei allen betrachteten Konzepten ebenfalls der Einfluss der Blechdicke evaluiert, welcher bei Dünnblechen mit Blechdicken kleiner als 25mm als erhöhender Faktor herangezogen werden kann. Unter Berücksichtigung des Blechdickenfaktors konnten die, zuvor bis zu 40% konservativen, Ergebnisse an die geprüften Festigkeitswerte angepasst werden. Zusätzlich wurden auch vergleichende Berechnungen an multiaxial beanspruchten Proben bzw. Bauteilen vorgenommen. Die multiaxiale Auswertung liefert tendenziell konservative Ergebnisse, wobei für die untersuchten Bauteile die Berechnung nach IIW jener der FKM vorzuziehen ist. Nach der FKM Richtlinie ergeben sich etwa fünfzig Prozent geringere Lebensdauerwerte für die angewandte Strukturspannungsberechnung als nach der IIW. Im Zuge dieser Arbeit konnte eine Modellierungs- und Auswerteempfehlung festgelegt werden, mit der eine einheitliche Beurteilung von Schweißverbindungen nach dem Nennspannungskonzept, anhand von Finite Elemente Schalenmodellen, ermöglicht wird. Dies stellt die Voraussetzung für eine normgerechte, multiaxiale Bauteilauslegung geschweißter Strukturen nach Eurocode 3 bzw. der FKM-Richtlinie dar.
KW - Schweißnahtbewertung
KW - Schalenmodell
KW - Schweißverbindung
KW - evaluation of weld seams
KW - shell model
KW - welded joint
M3 - Masterarbeit
ER -