Numerical Modelling of Vortexing Mould Powder Entrapment in a Continuous Casting Process

Research output: ThesisDoctoral Thesis

Standard

Bibtex - Download

@phdthesis{319feecca7c6493895bbfdeccafa8c79,
title = "Numerical Modelling of Vortexing Mould Powder Entrapment in a Continuous Casting Process",
abstract = "Unsteady three-dimensional turbulent flow phenomena like mould powder entrapment are seen to have a major impact on steel quality in the continuous casting process. Mould powder is placed on top of the mould in order to use it as a lubricant between the solidifying steel and the mould and to prevent heat losses from the molten steel. One reason for entrapping mould powder into the molten steel can be a vortexing flow at the interface between mould powder and molten steel near the Submerged Entry Nozzle (SEN). In a first part of this doctoral thesis it is investigated if it is possible to predict the transient build-up of vortical structures in the mould by means of the commercial Computational Fluid Dynamics (CFD) software package Fluent. The influence of different geometries, mesh sizes, turbulence models, initial as well as boundary conditions and argon on the simulation results is analysed. Due to the size and complexity of the problems the simulations partially have to be performed in parallel mode on a Linux-cluster computing environment. In a second part the possibility of using theoretical models out of the meteorological area of tornado modelling for capturing the vortex phenomenon in the casting mould is studied. In a final part the method of Linear Stability Analysis (LSA) is applied for the first time, to the author's knowledge, to the instability problem at the mould powder - steel - interface. Results of different parameter studies are presented and analysed.",
keywords = "Stahl Strangguss Gie{\ss}pulvereinzug Wirbel Numerische Simulation VOF Parallelisiertes Rechnen Orr-Sommerfeld-Gleichung Stabilit{\"a}tsanalyse, Steel Continuous Casting Mould Powder Entrapment Vortex Numerical Simulation VOF Parallel Computing Orr-Sommerfeld-Equation Stability Analysis",
author = "Gebhard Kastner",
note = "embargoed until null",
year = "2006",
language = "English",

}

RIS (suitable for import to EndNote) - Download

TY - BOOK

T1 - Numerical Modelling of Vortexing Mould Powder Entrapment in a Continuous Casting Process

AU - Kastner, Gebhard

N1 - embargoed until null

PY - 2006

Y1 - 2006

N2 - Unsteady three-dimensional turbulent flow phenomena like mould powder entrapment are seen to have a major impact on steel quality in the continuous casting process. Mould powder is placed on top of the mould in order to use it as a lubricant between the solidifying steel and the mould and to prevent heat losses from the molten steel. One reason for entrapping mould powder into the molten steel can be a vortexing flow at the interface between mould powder and molten steel near the Submerged Entry Nozzle (SEN). In a first part of this doctoral thesis it is investigated if it is possible to predict the transient build-up of vortical structures in the mould by means of the commercial Computational Fluid Dynamics (CFD) software package Fluent. The influence of different geometries, mesh sizes, turbulence models, initial as well as boundary conditions and argon on the simulation results is analysed. Due to the size and complexity of the problems the simulations partially have to be performed in parallel mode on a Linux-cluster computing environment. In a second part the possibility of using theoretical models out of the meteorological area of tornado modelling for capturing the vortex phenomenon in the casting mould is studied. In a final part the method of Linear Stability Analysis (LSA) is applied for the first time, to the author's knowledge, to the instability problem at the mould powder - steel - interface. Results of different parameter studies are presented and analysed.

AB - Unsteady three-dimensional turbulent flow phenomena like mould powder entrapment are seen to have a major impact on steel quality in the continuous casting process. Mould powder is placed on top of the mould in order to use it as a lubricant between the solidifying steel and the mould and to prevent heat losses from the molten steel. One reason for entrapping mould powder into the molten steel can be a vortexing flow at the interface between mould powder and molten steel near the Submerged Entry Nozzle (SEN). In a first part of this doctoral thesis it is investigated if it is possible to predict the transient build-up of vortical structures in the mould by means of the commercial Computational Fluid Dynamics (CFD) software package Fluent. The influence of different geometries, mesh sizes, turbulence models, initial as well as boundary conditions and argon on the simulation results is analysed. Due to the size and complexity of the problems the simulations partially have to be performed in parallel mode on a Linux-cluster computing environment. In a second part the possibility of using theoretical models out of the meteorological area of tornado modelling for capturing the vortex phenomenon in the casting mould is studied. In a final part the method of Linear Stability Analysis (LSA) is applied for the first time, to the author's knowledge, to the instability problem at the mould powder - steel - interface. Results of different parameter studies are presented and analysed.

KW - Stahl Strangguss Gießpulvereinzug Wirbel Numerische Simulation VOF Parallelisiertes Rechnen Orr-Sommerfeld-Gleichung Stabilitätsanalyse

KW - Steel Continuous Casting Mould Powder Entrapment Vortex Numerical Simulation VOF Parallel Computing Orr-Sommerfeld-Equation Stability Analysis

M3 - Doctoral Thesis

ER -