Mechanische und Thermomechanische Ermüdungseigenschaften von wärmebehandelten Aluminium-Silizium Gusslegierungen
Research output: Thesis › Doctoral Thesis
Standard
2016.
Research output: Thesis › Doctoral Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - BOOK
T1 - Mechanische und Thermomechanische Ermüdungseigenschaften von wärmebehandelten Aluminium-Silizium Gusslegierungen
AU - Huter, Patrik
N1 - gesperrt bis 26-01-2021
PY - 2016
Y1 - 2016
N2 - Ein Zylinderkopf in einem Verbrennungskraftmotor unterliegt während des Betriebes einer komplexen Belastung. Dies liegt vor allem in der Interaktion der Geometrie und der transient anisothermen betrieblichen Belastung. Dabei richtet sich die Motorlebensdauer hauptsächlich nach der Verlässlichkeit des Zylinderkopfes selbst, bzw. wird von dieser maßgeblich bestimmt. Somit ist die Ermittlung einer einheitlichen Theorie von Schadensmechanismen in Zylinderkopfmaterialien unter betrieblichen Bedingungen und deren quantitative Beschreibung notwendig. Nicht nur der Zylinderkopfproduzent kann dann gezielt auf Kundenanforderungen maßgeschneiderte Materialien anbieten, die in den charakteristischen Betriebspunkten verbesserte Werkstoffeigenschaften besitzen, sondern auch der Kunde selbst erhält damit die Möglichkeit mechanische und thermische Randbedingungen in Abstimmung mit der Legierung zu optimieren. Genau mit dieser Erfassung einer einheitlichen, anwendbaren Theorie für realistische Schadensmechanismen in Zylinderköpfen unter betrieblichen Bedingungen beschäftigt sich diese Arbeit. Dazu werden acht verschiedene hypoeutektische Aluminium-Silizium-Legierungen mit einer einheitlichen T7 Wärmebehandlung mittels Lebensdaueruntersuchungen auf unterschiedlichen thermomechanischen Belastungen geprüft. Zusätzlich helfen isotherme niederzyklische Lebensdaueruntersuchungen bzw. mikrostrukturelle insitu Rissanalysen bei der Identifikation der charakteristischen Schadensanteile. Dabei zeigten sich deutliche Unterschiede im Werkstoffverhalten, je nach Kupfer- und Siliziumgehalt der untersuchten Legierung. Bei thermisch und mechanisch hohen Belastungen bietet nur eine ausreichend duktile Matrix verbesserte Ermüdungseigenschaften. Diese Duktilität wird hauptsächlich von der Ausscheidungshärtung des Kupfers bestimmt. Daneben steht veredeltes Silizium im Eutektikum eng mit der Rissentstehung in Verbindung, da wachsende Ermüdungsrisse in diesem abgelenkt und verzögert werden können. Bei plastisch dominierenden Belastungen sind die eutektischen Interaktionen mit den Ermüdungsrissen so zahlreich, dass quantitativ nur noch die Duktilität mit der Materialschädigung korreliert. Basierend auf diesen Untersuchungen und Erkenntnissen konnte ein Schädigungsmodell entwickelt werden, welches diese Effekte bei Umgebungsbedingungen und thermischer Belastung vereinheitlichend betrachtet. Dieses Modell ermöglicht zudem über eine Auftrennung in reine Ermüdung und Hochtemperaturschädigung die Beschreibung von sowohl iso- als auch anisothermen Belastungen. Im Vergleich zu anderen aus der Literatur bekannten Schadensmodellen bezieht sich dieses Modell speziell auf Aluminium-Silizium-Zylinderköpfe. Somit ist es möglich, für dieses Modell einen einzigen kalibrierten Parametersatz anzubieten und damit die Ermüdungseigenschaften aller untersuchten Legierungen in enger Korrelation quantitativ zu bestimmen. Im Benchmark wurden zusätzlich das TMF-Modell nach Neu & Sehitoglu und ein neuronales Netz diesem Schädigungsmodell gegenübergestellt. Mittels eines eigens programmierten Kalkulators wurden diese Modelle in einer finiten Elemente-Berechnung implementiert. Bei Anwendung der Schädigungsmodelle auf einen Demonstrator-Zylinderkopf zeigten sich unterschiedliche Hot-Spots der Schädigung zwischen den Ventilsitzen, die in weiterer Folge nur an einem realen Bauteil validiert werden können.
AB - Ein Zylinderkopf in einem Verbrennungskraftmotor unterliegt während des Betriebes einer komplexen Belastung. Dies liegt vor allem in der Interaktion der Geometrie und der transient anisothermen betrieblichen Belastung. Dabei richtet sich die Motorlebensdauer hauptsächlich nach der Verlässlichkeit des Zylinderkopfes selbst, bzw. wird von dieser maßgeblich bestimmt. Somit ist die Ermittlung einer einheitlichen Theorie von Schadensmechanismen in Zylinderkopfmaterialien unter betrieblichen Bedingungen und deren quantitative Beschreibung notwendig. Nicht nur der Zylinderkopfproduzent kann dann gezielt auf Kundenanforderungen maßgeschneiderte Materialien anbieten, die in den charakteristischen Betriebspunkten verbesserte Werkstoffeigenschaften besitzen, sondern auch der Kunde selbst erhält damit die Möglichkeit mechanische und thermische Randbedingungen in Abstimmung mit der Legierung zu optimieren. Genau mit dieser Erfassung einer einheitlichen, anwendbaren Theorie für realistische Schadensmechanismen in Zylinderköpfen unter betrieblichen Bedingungen beschäftigt sich diese Arbeit. Dazu werden acht verschiedene hypoeutektische Aluminium-Silizium-Legierungen mit einer einheitlichen T7 Wärmebehandlung mittels Lebensdaueruntersuchungen auf unterschiedlichen thermomechanischen Belastungen geprüft. Zusätzlich helfen isotherme niederzyklische Lebensdaueruntersuchungen bzw. mikrostrukturelle insitu Rissanalysen bei der Identifikation der charakteristischen Schadensanteile. Dabei zeigten sich deutliche Unterschiede im Werkstoffverhalten, je nach Kupfer- und Siliziumgehalt der untersuchten Legierung. Bei thermisch und mechanisch hohen Belastungen bietet nur eine ausreichend duktile Matrix verbesserte Ermüdungseigenschaften. Diese Duktilität wird hauptsächlich von der Ausscheidungshärtung des Kupfers bestimmt. Daneben steht veredeltes Silizium im Eutektikum eng mit der Rissentstehung in Verbindung, da wachsende Ermüdungsrisse in diesem abgelenkt und verzögert werden können. Bei plastisch dominierenden Belastungen sind die eutektischen Interaktionen mit den Ermüdungsrissen so zahlreich, dass quantitativ nur noch die Duktilität mit der Materialschädigung korreliert. Basierend auf diesen Untersuchungen und Erkenntnissen konnte ein Schädigungsmodell entwickelt werden, welches diese Effekte bei Umgebungsbedingungen und thermischer Belastung vereinheitlichend betrachtet. Dieses Modell ermöglicht zudem über eine Auftrennung in reine Ermüdung und Hochtemperaturschädigung die Beschreibung von sowohl iso- als auch anisothermen Belastungen. Im Vergleich zu anderen aus der Literatur bekannten Schadensmodellen bezieht sich dieses Modell speziell auf Aluminium-Silizium-Zylinderköpfe. Somit ist es möglich, für dieses Modell einen einzigen kalibrierten Parametersatz anzubieten und damit die Ermüdungseigenschaften aller untersuchten Legierungen in enger Korrelation quantitativ zu bestimmen. Im Benchmark wurden zusätzlich das TMF-Modell nach Neu & Sehitoglu und ein neuronales Netz diesem Schädigungsmodell gegenübergestellt. Mittels eines eigens programmierten Kalkulators wurden diese Modelle in einer finiten Elemente-Berechnung implementiert. Bei Anwendung der Schädigungsmodelle auf einen Demonstrator-Zylinderkopf zeigten sich unterschiedliche Hot-Spots der Schädigung zwischen den Ventilsitzen, die in weiterer Folge nur an einem realen Bauteil validiert werden können.
KW - cylinder head
KW - thermo-mechanical fatigue
KW - aluminium
KW - damage analysis
KW - fatigue
KW - lifetime
KW - fatigue model
KW - TMF
KW - LCF
KW - HCF
KW - Al-Si cast alloy
KW - Zylinderkopf
KW - thermomechanische Ermüdung
KW - Aluminium
KW - Schadensanalyse
KW - Ermüdung
KW - Lebensdauer
KW - Lebensdauermodell
KW - TMF
KW - LCF
KW - HCF
KW - Al-Si Gusslegierung
M3 - Dissertation
ER -