Mechanical response of textured alumina-based ceramics after Hertzian contact damage
Research output: Thesis › Master's Thesis
Standard
2023.
Research output: Thesis › Master's Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Mechanical response of textured alumina-based ceramics after Hertzian contact damage
AU - Stücklberger, Fabian
N1 - no embargo
PY - 2023
Y1 - 2023
N2 - Mimicking biological materials (i.e. nacre) has been established as effective approach to enhance the mechanical properties of advanced ceramic. The design of layered multi-material ceramic architectures with strong interfaces introduces alternating in-plane residual stresses, caused by the thermal mismatch after cooling down from sintering temperature. In so-called damage-tolerant designs, the embedded layers with in-plane compressive residual stresses in a multilayer system (laminate) can be used for providing a barrier against crack propagation. Furthermore, microstructure ¿texturing¿ through template grain growth has been demonstrated to further increase the fracture resistance of laminates through crack deflection mechanisms within the textured layer. The combination of texturing and in-plane compressive residuals stresses in a multilayer architecture may be used to improve contact resistance in ceramics. In recent research, the effectiveness of layered alumina ceramics against Hertzian crack initiation has been demonstrated, as a combination of sub-surface micro-crack formation and crack deflection within the textured layers. The question raises whether such architecture containing textured alumina (nacre-like) layers with elongated grains can be also effective against the further propagation of contact cracks. In this thesis, the mechanical response of textured alumina-based layered ceramics after Hertzian contact damage is investigated. Layered designs and monolithic samples are fabricated using tape casting method. Uniaxial bending tests are performed on laminates after spherical contact loading. Two orientations, parallel and perpendicular to the casted layers are tested. Results are compared to the mechanical response of equiaxed and textured monoliths, taken as a reference. Fractographic analyses are carried out to understand the fracture process.
AB - Mimicking biological materials (i.e. nacre) has been established as effective approach to enhance the mechanical properties of advanced ceramic. The design of layered multi-material ceramic architectures with strong interfaces introduces alternating in-plane residual stresses, caused by the thermal mismatch after cooling down from sintering temperature. In so-called damage-tolerant designs, the embedded layers with in-plane compressive residual stresses in a multilayer system (laminate) can be used for providing a barrier against crack propagation. Furthermore, microstructure ¿texturing¿ through template grain growth has been demonstrated to further increase the fracture resistance of laminates through crack deflection mechanisms within the textured layer. The combination of texturing and in-plane compressive residuals stresses in a multilayer architecture may be used to improve contact resistance in ceramics. In recent research, the effectiveness of layered alumina ceramics against Hertzian crack initiation has been demonstrated, as a combination of sub-surface micro-crack formation and crack deflection within the textured layers. The question raises whether such architecture containing textured alumina (nacre-like) layers with elongated grains can be also effective against the further propagation of contact cracks. In this thesis, the mechanical response of textured alumina-based layered ceramics after Hertzian contact damage is investigated. Layered designs and monolithic samples are fabricated using tape casting method. Uniaxial bending tests are performed on laminates after spherical contact loading. Two orientations, parallel and perpendicular to the casted layers are tested. Results are compared to the mechanical response of equiaxed and textured monoliths, taken as a reference. Fractographic analyses are carried out to understand the fracture process.
KW - Kontaktschädigung
KW - Aluminiumoxid
KW - Laminate
KW - texturiertes Gefüge
KW - Fraktographie
KW - Eigenspannungen
KW - contact damage
KW - alumina
KW - laminates
KW - textured microstructure
KW - fractography
KW - residual stresses
M3 - Master's Thesis
ER -