Machine learning prediction of methane, ethane, and propane solubility in pure water and electrolyte solutions: Implications for stray gas migration modeling
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Acta Geochimica, Vol. 43, No. 5, 10.2024, p. 971-984.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Machine learning prediction of methane, ethane, and propane solubility in pure water and electrolyte solutions
T2 - Implications for stray gas migration modeling
AU - Kooti, Ghazal
AU - Taherdangkoo, Reza
AU - Chen, Chaofan
AU - Sergeev, Nikita
AU - Doulati Ardejani, Faramarz
AU - Meng, Tao
AU - Butscher, Christoph
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/10
Y1 - 2024/10
KW - Boosted regression tree
KW - Gas solubility
KW - Groundwater contamination
KW - Hydraulic fracturing
KW - Regression tree
KW - Thermodynamic models
UR - http://www.scopus.com/inward/record.url?scp=85188311947&partnerID=8YFLogxK
U2 - 10.1007/s11631-024-00680-8
DO - 10.1007/s11631-024-00680-8
M3 - Article
AN - SCOPUS:85188311947
VL - 43
SP - 971
EP - 984
JO - Acta Geochimica
JF - Acta Geochimica
SN - 2096-0956
IS - 5
ER -