Machine learning driven prediction of mechanical properties of rolled aluminum and development of an in-situ quality control method based on electrical resistivity measurement
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Journal of manufacturing processes, Vol. 106.2023, No. 24 November, 05.10.2023, p. 158-177.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Machine learning driven prediction of mechanical properties of rolled aluminum and development of an in-situ quality control method based on electrical resistivity measurement
AU - Hartl, Karin
AU - Sorger, Marcel
AU - Weiß, Helmut
AU - Stockinger, Martin
PY - 2023/10/5
Y1 - 2023/10/5
U2 - 10.1016/j.jmapro.2023.09.058
DO - 10.1016/j.jmapro.2023.09.058
M3 - Article
VL - 106.2023
SP - 158
EP - 177
JO - Journal of manufacturing processes
JF - Journal of manufacturing processes
SN - 0278-6125
IS - 24 November
ER -