Investigation of the Mechanical Properties of Sandwich Composite Panels Made with Recyclates and Flax Fiber/Bio-Based Epoxy Processed by Liquid Composite Molding
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
Abstract
Despite significant advancements in bio-based natural-fiber-reinforced composites, the recyclability/reprocessing of thermoset composites remains a persistent challenge that needs to be addressed. In the present study, an effort is made to provide a justification for the recyclability/reprocessing assessment of sandwich composite panels made with ‘recyclate’ (i.e., recycled flax/bio-based epoxy composite) cores and (flax/bio-based epoxy) skins produced by liquid composite molding. Resin transfer molding and vacuum-assisted resin infusion processes were used to investigate the influence of production processes on mechanical properties. Two different recyclate sizes—4 mm and 10 mm—were used to fabricate sandwich composite panels to study the effect of size on the mechanical properties of the panels. This study aims to compare the qualities of sandwich panels to those of virgin composite panels in terms of their physical (density) and mechanical properties (tensile and flexural). Additionally, the recyclate packing was verified by employing digital microscopy. The results illustrated that the sandwich panels made with the 4 mm recyclates exhibited better mechanical properties compared to those made with the 10 mm recyclates. In comparison with virgin composite panels, the sandwich composite panels made of flax fiber and (flax/epoxy) recyclate exhibited significantly higher flexural moduli, which was attributed to their moments of inertia. This article emphasizes recycling/reprocessing and demonstrates an effective closed-loop approach. Thus, by preserving the structural integrity of recyclates, sandwich panels could be advantageous for semi-structural applications.
Details
Original language | English |
---|---|
Article number | 122 |
Number of pages | 16 |
Journal | Journal of composites science |
Volume | 7.2023 |
Issue number | 3 |
DOIs | |
Publication status | Published - 15 Mar 2023 |