How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Nature Reviews. Physics (e-only), Vol. 2023, No. ??? Stand: 27. November 2023, 14.11.2023.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - How to verify the precision of density-functional-theory implementations via reproducible and universal workflows
AU - Bosoni, Emanuele
AU - Beal, Louis
AU - Bercx, Marnik
AU - Blaha, Peter
AU - Blügel, Stefan
AU - Bröder, Jens
AU - Callsen, Martin
AU - Cottenier, Stefaan
AU - Degomme, Augustin
AU - Dikan, Vladimir
AU - Eimre, Kristjan
AU - Flage-Larsen, Espen
AU - Fornari, Marco
AU - Garcia, Alberto
AU - Genovese, Luigi
AU - Giantomassi, Matteo
AU - Huber, Sebastian P.
AU - Janssen, Henning
AU - Kastlunger, Georg
AU - Krack, Matthias
AU - Kresse, Georg
AU - Kühne, Thomas D.
AU - Lejaeghere, Kurt
AU - Madsen, Georg K. H.
AU - Marsman, Martijn
AU - Marzari, Nicola
AU - Michalicek, Gregor
AU - Mirhosseini, Hossein
AU - Müller, Tiziano M. A.
AU - Petretto, Guido
AU - Pickard, Chris J.
AU - Poncé, Samuel
AU - Rignanese, Gian-Marco
AU - Rubel, Oleg
AU - Ruh, Thomas
AU - Sluydts, Michael
AU - Vanpoucke, Danny E. P.
AU - Vijay, Sudarshan
AU - Wolloch, Michael
AU - Wortmann, Daniel
AU - Yakutovich, AliaksandrV.
AU - Yu, Jusong
AU - Zadoks, Austin
AU - Zhu, Bonan
AU - Pizzi, Giovanni
N1 - Publisher Copyright: © 2023, Springer Nature Limited.
PY - 2023/11/14
Y1 - 2023/11/14
N2 - Density-functional theory methods and codes adopting periodicboundary conditions are extensively used in condensed matter physicsand materials science research. In 2016, their precision (how wellproperties computed with different codes agree among each other) wassystematically assessed on elemental crystals: a first crucial step to evaluatethe reliability of such computations. In this Expert Recommendation, wediscuss recommendations for verification studies aiming at further testingprecision and transferability of density-functional-theory computationalapproaches and codes. We illustrate such recommendations using a greatlyexpanded protocol covering the whole periodic table from Z = 1 to 96 andcharacterizing 10 prototypical cubic compounds for each element: fourunaries and six oxides, spanning a wide range of coordination numbersand oxidation states. The primary outcome is a reference dataset of960 equations of state cross-checked between two all-electron codes,then used to verify and improve nine pseudopotential-based approaches.Finally, we discuss the extent to which the current results for total energiescan be reused for different goals.
AB - Density-functional theory methods and codes adopting periodicboundary conditions are extensively used in condensed matter physicsand materials science research. In 2016, their precision (how wellproperties computed with different codes agree among each other) wassystematically assessed on elemental crystals: a first crucial step to evaluatethe reliability of such computations. In this Expert Recommendation, wediscuss recommendations for verification studies aiming at further testingprecision and transferability of density-functional-theory computationalapproaches and codes. We illustrate such recommendations using a greatlyexpanded protocol covering the whole periodic table from Z = 1 to 96 andcharacterizing 10 prototypical cubic compounds for each element: fourunaries and six oxides, spanning a wide range of coordination numbersand oxidation states. The primary outcome is a reference dataset of960 equations of state cross-checked between two all-electron codes,then used to verify and improve nine pseudopotential-based approaches.Finally, we discuss the extent to which the current results for total energiescan be reused for different goals.
UR - http://www.scopus.com/inward/record.url?scp=85176591233&partnerID=8YFLogxK
U2 - 10.1038/s42254-023-00655-3
DO - 10.1038/s42254-023-00655-3
M3 - Article
VL - 2023
JO - Nature Reviews. Physics (e-only)
JF - Nature Reviews. Physics (e-only)
SN - 2522-5820
IS - ??? Stand: 27. November 2023
ER -