How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

Research output: Contribution to journalArticleResearchpeer-review

Standard

How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. / Bosoni, Emanuele; Beal, Louis; Bercx, Marnik et al.
In: Nature Reviews. Physics (e-only), Vol. 2023, No. ??? Stand: 27. November 2023, 14.11.2023.

Research output: Contribution to journalArticleResearchpeer-review

Harvard

Bosoni, E, Beal, L, Bercx, M, Blaha, P, Blügel, S, Bröder, J, Callsen, M, Cottenier, S, Degomme, A, Dikan, V, Eimre, K, Flage-Larsen, E, Fornari, M, Garcia, A, Genovese, L, Giantomassi, M, Huber, SP, Janssen, H, Kastlunger, G, Krack, M, Kresse, G, Kühne, TD, Lejaeghere, K, Madsen, GKH, Marsman, M, Marzari, N, Michalicek, G, Mirhosseini, H, Müller, TMA, Petretto, G, Pickard, CJ, Poncé, S, Rignanese, G-M, Rubel, O, Ruh, T, Sluydts, M, Vanpoucke, DEP, Vijay, S, Wolloch, M, Wortmann, D, Yakutovich, A, Yu, J, Zadoks, A, Zhu, B & Pizzi, G 2023, 'How to verify the precision of density-functional-theory implementations via reproducible and universal workflows', Nature Reviews. Physics (e-only), vol. 2023, no. ??? Stand: 27. November 2023. https://doi.org/10.1038/s42254-023-00655-3

APA

Bosoni, E., Beal, L., Bercx, M., Blaha, P., Blügel, S., Bröder, J., Callsen, M., Cottenier, S., Degomme, A., Dikan, V., Eimre, K., Flage-Larsen, E., Fornari, M., Garcia, A., Genovese, L., Giantomassi, M., Huber, S. P., Janssen, H., Kastlunger, G., ... Pizzi, G. (2023). How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nature Reviews. Physics (e-only), 2023(??? Stand: 27. November 2023). https://doi.org/10.1038/s42254-023-00655-3

Vancouver

Bosoni E, Beal L, Bercx M, Blaha P, Blügel S, Bröder J et al. How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. Nature Reviews. Physics (e-only). 2023 Nov 14;2023(??? Stand: 27. November 2023). doi: 10.1038/s42254-023-00655-3

Author

Bosoni, Emanuele ; Beal, Louis ; Bercx, Marnik et al. / How to verify the precision of density-functional-theory implementations via reproducible and universal workflows. In: Nature Reviews. Physics (e-only). 2023 ; Vol. 2023, No. ??? Stand: 27. November 2023.

Bibtex - Download

@article{ad7349b7ddbe4985b4fee4b94d52fe67,
title = "How to verify the precision of density-functional-theory implementations via reproducible and universal workflows",
abstract = "Density-functional theory methods and codes adopting periodicboundary conditions are extensively used in condensed matter physicsand materials science research. In 2016, their precision (how wellproperties computed with different codes agree among each other) wassystematically assessed on elemental crystals: a first crucial step to evaluatethe reliability of such computations. In this Expert Recommendation, wediscuss recommendations for verification studies aiming at further testingprecision and transferability of density-functional-theory computationalapproaches and codes. We illustrate such recommendations using a greatlyexpanded protocol covering the whole periodic table from Z = 1 to 96 andcharacterizing 10 prototypical cubic compounds for each element: fourunaries and six oxides, spanning a wide range of coordination numbersand oxidation states. The primary outcome is a reference dataset of960 equations of state cross-checked between two all-electron codes,then used to verify and improve nine pseudopotential-based approaches.Finally, we discuss the extent to which the current results for total energiescan be reused for different goals.",
author = "Emanuele Bosoni and Louis Beal and Marnik Bercx and Peter Blaha and Stefan Bl{\"u}gel and Jens Br{\"o}der and Martin Callsen and Stefaan Cottenier and Augustin Degomme and Vladimir Dikan and Kristjan Eimre and Espen Flage-Larsen and Marco Fornari and Alberto Garcia and Luigi Genovese and Matteo Giantomassi and Huber, {Sebastian P.} and Henning Janssen and Georg Kastlunger and Matthias Krack and Georg Kresse and K{\"u}hne, {Thomas D.} and Kurt Lejaeghere and Madsen, {Georg K. H.} and Martijn Marsman and Nicola Marzari and Gregor Michalicek and Hossein Mirhosseini and M{\"u}ller, {Tiziano M. A.} and Guido Petretto and Pickard, {Chris J.} and Samuel Ponc{\'e} and Gian-Marco Rignanese and Oleg Rubel and Thomas Ruh and Michael Sluydts and Vanpoucke, {Danny E. P.} and Sudarshan Vijay and Michael Wolloch and Daniel Wortmann and AliaksandrV. Yakutovich and Jusong Yu and Austin Zadoks and Bonan Zhu and Giovanni Pizzi",
note = "Publisher Copyright: {\textcopyright} 2023, Springer Nature Limited.",
year = "2023",
month = nov,
day = "14",
doi = "10.1038/s42254-023-00655-3",
language = "English",
volume = "2023",
journal = "Nature Reviews. Physics (e-only)",
issn = "2522-5820",
publisher = "Springer Nature Switzerland AG",
number = "??? Stand: 27. November 2023",

}

RIS (suitable for import to EndNote) - Download

TY - JOUR

T1 - How to verify the precision of density-functional-theory implementations via reproducible and universal workflows

AU - Bosoni, Emanuele

AU - Beal, Louis

AU - Bercx, Marnik

AU - Blaha, Peter

AU - Blügel, Stefan

AU - Bröder, Jens

AU - Callsen, Martin

AU - Cottenier, Stefaan

AU - Degomme, Augustin

AU - Dikan, Vladimir

AU - Eimre, Kristjan

AU - Flage-Larsen, Espen

AU - Fornari, Marco

AU - Garcia, Alberto

AU - Genovese, Luigi

AU - Giantomassi, Matteo

AU - Huber, Sebastian P.

AU - Janssen, Henning

AU - Kastlunger, Georg

AU - Krack, Matthias

AU - Kresse, Georg

AU - Kühne, Thomas D.

AU - Lejaeghere, Kurt

AU - Madsen, Georg K. H.

AU - Marsman, Martijn

AU - Marzari, Nicola

AU - Michalicek, Gregor

AU - Mirhosseini, Hossein

AU - Müller, Tiziano M. A.

AU - Petretto, Guido

AU - Pickard, Chris J.

AU - Poncé, Samuel

AU - Rignanese, Gian-Marco

AU - Rubel, Oleg

AU - Ruh, Thomas

AU - Sluydts, Michael

AU - Vanpoucke, Danny E. P.

AU - Vijay, Sudarshan

AU - Wolloch, Michael

AU - Wortmann, Daniel

AU - Yakutovich, AliaksandrV.

AU - Yu, Jusong

AU - Zadoks, Austin

AU - Zhu, Bonan

AU - Pizzi, Giovanni

N1 - Publisher Copyright: © 2023, Springer Nature Limited.

PY - 2023/11/14

Y1 - 2023/11/14

N2 - Density-functional theory methods and codes adopting periodicboundary conditions are extensively used in condensed matter physicsand materials science research. In 2016, their precision (how wellproperties computed with different codes agree among each other) wassystematically assessed on elemental crystals: a first crucial step to evaluatethe reliability of such computations. In this Expert Recommendation, wediscuss recommendations for verification studies aiming at further testingprecision and transferability of density-functional-theory computationalapproaches and codes. We illustrate such recommendations using a greatlyexpanded protocol covering the whole periodic table from Z = 1 to 96 andcharacterizing 10 prototypical cubic compounds for each element: fourunaries and six oxides, spanning a wide range of coordination numbersand oxidation states. The primary outcome is a reference dataset of960 equations of state cross-checked between two all-electron codes,then used to verify and improve nine pseudopotential-based approaches.Finally, we discuss the extent to which the current results for total energiescan be reused for different goals.

AB - Density-functional theory methods and codes adopting periodicboundary conditions are extensively used in condensed matter physicsand materials science research. In 2016, their precision (how wellproperties computed with different codes agree among each other) wassystematically assessed on elemental crystals: a first crucial step to evaluatethe reliability of such computations. In this Expert Recommendation, wediscuss recommendations for verification studies aiming at further testingprecision and transferability of density-functional-theory computationalapproaches and codes. We illustrate such recommendations using a greatlyexpanded protocol covering the whole periodic table from Z = 1 to 96 andcharacterizing 10 prototypical cubic compounds for each element: fourunaries and six oxides, spanning a wide range of coordination numbersand oxidation states. The primary outcome is a reference dataset of960 equations of state cross-checked between two all-electron codes,then used to verify and improve nine pseudopotential-based approaches.Finally, we discuss the extent to which the current results for total energiescan be reused for different goals.

UR - http://www.scopus.com/inward/record.url?scp=85176591233&partnerID=8YFLogxK

U2 - 10.1038/s42254-023-00655-3

DO - 10.1038/s42254-023-00655-3

M3 - Article

VL - 2023

JO - Nature Reviews. Physics (e-only)

JF - Nature Reviews. Physics (e-only)

SN - 2522-5820

IS - ??? Stand: 27. November 2023

ER -