High-resolution densitometry and elemental analysis of tropical wood

Research output: Contribution to journalArticleResearchpeer-review

Authors

External Organisational units

  • University of Natural Resources and Life Sciences
  • BOKU
  • Universität Wien

Abstract

Dendrochemistry uses the variation in wood chemical composition to infer about past environmental conditions and possible effects on tree growth. Elemental or isotopic variation might also help to identify annual growth where tree rings are anatomically not distinct. However, most elements are—to a certain degree—mobile within wood and may be related to anatomical structures. Therefore, understanding what affects elemental distribution is important to make use of and critically assess the potential of dendrochemistry. We studied the variation of wood density and elements at high spatial resolution in wood of six species with anatomically distinct to rather indistinct tree rings from a Thai monsoon forest. Many elements had a higher concentration in parenchyma than in fiber cells, and the co-variation of elements differed strongly between elements and also between species. Strong wood density changes along the ring boundary were found only in Melia azedarach. In all species, the X-ray images showed crystals. EDX spectra showed that these consist of calcium or silicon (in Chukrasia tabularis) as major elemental components. A high concentration of heavy metals (Fe, Cu and Zn) was found in Vitex peduncularis. We conclude that at least for the species studied the radial variation of elemental concentration is unlikely to reveal annual rings that anatomy could not. However, if elements in crystals are more stable than in cell walls or living protoplasts, analyzing the distribution of elements present in crystals may show environmental conditions that, in turn, influence crystal formation and are little known.

Details

Original languageEnglish
Pages (from-to)487-497
Number of pages11
JournalTrees : structure and function
Volume29.2015
Issue number2
Early online date27 Nov 2014
DOIs
Publication statusPublished - Apr 2015