Fracture Network Analysis of the Balmuccia Peridotite by Drone-Based Photogrammetry
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
Standard
NSG2022 3rd Conference on Airborne, Drone and Robotic Geophysics. Vol. 2022 2022.
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - GEN
T1 - Fracture Network Analysis of the Balmuccia Peridotite by Drone-Based Photogrammetry
AU - Menegoni, Niccolo
AU - Greenwood, Andrew
AU - Hetényi, György
PY - 2022
Y1 - 2022
N2 - A drone-based Digital Outcrop Model (DOM) of the Balmuccia Peridotite (Ivrea-Verbano Zone, Italy) was developed to quantitatively characterize the rock discontinuity network and to aid interpretation of high-resolution seismic datasets that cross the drilling target of the Drilling the Ivrea-Verbano zonE (DIVE) Phase 2 project. Thanks to the photograph resolution (3 cm/pixel), the drone on-board Real Time Kinematic-Global Navigation Satellite System, and the Ground Control Points, it was possible to develop a high resolution and accurate DOM. Eight sets of discontinuities (e.g., fault, fracture, layering) are identified, their length distributions are defined, and the areal intensity (P21) and spatial variations estimated. The orientations of the discontinuity sets agree with previous field-based studies indicating a good validity of DOM-analysis. It shows that the N-S vertical set (pyroxenite layers marking the foliation) is the most frequent, the E-dipping set has the highest size, and the two vertical sets trending ca. WNW-ESE and WSW-ENE (trace of fault system) have the lowest frequency and size. Moreover, the dataset shows that the highest P21 is located closer to the inactive quarry and to the Peridotite-Mafic complex contact. These findings will have major implications for the interpretation of the high-resolution seismic data of the Balmuccia target.
AB - A drone-based Digital Outcrop Model (DOM) of the Balmuccia Peridotite (Ivrea-Verbano Zone, Italy) was developed to quantitatively characterize the rock discontinuity network and to aid interpretation of high-resolution seismic datasets that cross the drilling target of the Drilling the Ivrea-Verbano zonE (DIVE) Phase 2 project. Thanks to the photograph resolution (3 cm/pixel), the drone on-board Real Time Kinematic-Global Navigation Satellite System, and the Ground Control Points, it was possible to develop a high resolution and accurate DOM. Eight sets of discontinuities (e.g., fault, fracture, layering) are identified, their length distributions are defined, and the areal intensity (P21) and spatial variations estimated. The orientations of the discontinuity sets agree with previous field-based studies indicating a good validity of DOM-analysis. It shows that the N-S vertical set (pyroxenite layers marking the foliation) is the most frequent, the E-dipping set has the highest size, and the two vertical sets trending ca. WNW-ESE and WSW-ENE (trace of fault system) have the lowest frequency and size. Moreover, the dataset shows that the highest P21 is located closer to the inactive quarry and to the Peridotite-Mafic complex contact. These findings will have major implications for the interpretation of the high-resolution seismic data of the Balmuccia target.
U2 - https://doi.org/10.3997/2214-4609.202220052
DO - https://doi.org/10.3997/2214-4609.202220052
M3 - Conference contribution
VL - 2022
BT - NSG2022 3rd Conference on Airborne, Drone and Robotic Geophysics
ER -