Effect of Increased Powder-Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding
Research output: Contribution to journal › Article › Research › peer-review
Standard
In: Polymers, Vol. 14.2022, No. 17, 3653, 02.09.2022.
Research output: Contribution to journal › Article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - JOUR
T1 - Effect of Increased Powder-Binder Adhesion by Backbone Grafting on the Properties of Feedstocks for Ceramic Injection Molding
AU - Ghasemi-Mobarakeh, Laleh
AU - Cano, Santiago
AU - Momeni, Vahid
AU - Liu, Dongyan
AU - Duretek, Ivica
AU - Riess, Gisbert
AU - Kukla, Christian
AU - Holzer, Clemens
PY - 2022/9/2
Y1 - 2022/9/2
N2 - The good interaction between the ceramic powder and the binder system is vital for ceramic injection molding and prevents the phase separation during processing. Due to the non-polar structure of polyolefins such as high-density polyethylene (HDPE) and the polar surface of ceramics such as zirconia, there is not appropriate adhesion between them. In this study, the effect of adding high-density polyethylene grafted with acrylic acid (AAHDPE), with high polarity and strong adhesion to the powder, on the rheological, thermal and chemical properties of polymer composites highly filled with zirconia and feedstocks was evaluated. To gain a deeper understanding of the effect of each component, formulations containing different amounts of HDPE and or AAHDPE, zirconia and paraffin wax (PW) were prepared. Attenuated total reflection spectroscopy (ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and rotational and capillary rheology were used for the characterization of the different formulations. The ATR analysis revealed the formation of hydrogen bonds between the hydroxyl groups on the zirconia surface and AAHDPE. The improved powder-binder adhesion in the formulations with more AAHDPE resulted in a better powder dispersion and homogeneous mixtures, as observed by SEM. DSC results revealed that the addition of AAHDPE, PW and zirconia effect the melting and crystallization temperature and crystallinity of the binder, the polymer-filled system and feedstocks. The better powder--binder adhesion and powder dispersion effectively decreased the viscosity of the highly filled polymer composites and feedstocks with AAHDPE; this showed the potential of grafted polymers as binders for ceramic injection molding.
AB - The good interaction between the ceramic powder and the binder system is vital for ceramic injection molding and prevents the phase separation during processing. Due to the non-polar structure of polyolefins such as high-density polyethylene (HDPE) and the polar surface of ceramics such as zirconia, there is not appropriate adhesion between them. In this study, the effect of adding high-density polyethylene grafted with acrylic acid (AAHDPE), with high polarity and strong adhesion to the powder, on the rheological, thermal and chemical properties of polymer composites highly filled with zirconia and feedstocks was evaluated. To gain a deeper understanding of the effect of each component, formulations containing different amounts of HDPE and or AAHDPE, zirconia and paraffin wax (PW) were prepared. Attenuated total reflection spectroscopy (ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and rotational and capillary rheology were used for the characterization of the different formulations. The ATR analysis revealed the formation of hydrogen bonds between the hydroxyl groups on the zirconia surface and AAHDPE. The improved powder-binder adhesion in the formulations with more AAHDPE resulted in a better powder dispersion and homogeneous mixtures, as observed by SEM. DSC results revealed that the addition of AAHDPE, PW and zirconia effect the melting and crystallization temperature and crystallinity of the binder, the polymer-filled system and feedstocks. The better powder--binder adhesion and powder dispersion effectively decreased the viscosity of the highly filled polymer composites and feedstocks with AAHDPE; this showed the potential of grafted polymers as binders for ceramic injection molding.
KW - ceramic injection molding
KW - feedstock
KW - acrylic acid grafted high density polyethylene
KW - paraffin wax
KW - high density polyethylene
KW - binder
U2 - 10.3390/polym14173653
DO - 10.3390/polym14173653
M3 - Article
VL - 14.2022
JO - Polymers
JF - Polymers
SN - 2073-4360
IS - 17
M1 - 3653
ER -