Economic Evaluation of Renewable Hydrogen Integration into Steelworks for the Production of Methanol and Methane

Research output: Contribution to journalArticleResearchpeer-review

Authors

  • Michael Bampaou
  • Kyriakos Panopoulos
  • Panos Seferlis
  • Amaia Sasiain
  • Stéphane Haag
  • Leokadia Rog
  • Przemyslaw Rompalski
  • Sebastian Kolb
  • Nina Kieberger
  • Stefano Dettori
  • Ismael Matino
  • Valentina Colla

External Organisational units

  • Centre for Research and Technology Hellas
  • K1-MET GmbH; Stahlstraße 14; Linz, 4020, Austria
  • Central Mining Institute
  • Air Liquide Research & Development
  • voestalpine Stahl Linz GmbH
  • Telecommunications, Computer Engineering, and Photonics Institute
  • Aristotle University of Thessaloniki
  • Friedrich-Alexander-Universität Erlangen-Nürnberg

Abstract

This work investigates the cost-efficient integration of renewable hydrogen into steelworks for the production of methane and methanol as an efficient way to decarbonize the steel industry. Three case studies that utilize a mixture of steelworks off-gases (blast furnace gas, coke oven gas, and basic oxygen furnace gas), which differ on the amount of used off-gases as well as on the end product (methane and/or methanol), are analyzed and evaluated in terms of their economic performance. The most influential cost factors are identified and sensitivity analyses are conducted for different operating and economic parameters. Renewable hydrogen produced by PEM electrolysis is the most expensive component in this scheme and responsible for over 80% of the total costs. Progress in the hydrogen economy (lower electrolyzer capital costs, improved electrolyzer efficiency, and lower electricity prices) is necessary to establish this technology in the future.

Details

Original languageEnglish
Article number4650
Number of pages26
JournalEnergies
Volume15.2022
Issue number13
DOIs
Publication statusPublished - 24 Jun 2022