Deformation and fracture of lithosphere-inspired polymeric multi-layer composites
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
Abstract
Inspired by the diversity of structures and patterns inherent in the earth's lithosphere, this study endeavors to enhance the interplay between stiffness and toughness through the introduction of a new class of polymeric multi-layer composite materials termed by the authors as "lithomers". Structured single-edge notched bending specimens were fabricated using a combination of additive manufacturing and casting, employing two different methacrylate-thiol resins. The outer layers exhibit a stiff and brittle characteristic, while the layer in between is compliant in nature. Three types of lithomers with wave-like structures and one with a rectilinear structure were investigated regarding their stiffness and toughness in a 3-point bending setup. The results were compared with those of a pure stiff matrix material. The findings revealed that fracture toughness increased regardless of the interlayer's shape compared to the pure matrix material. Correspondingly, this enhancement in fracture toughness correlated with a reduction in stiffness. The most balanced results in terms of stiffness and fracture toughness were achieved, with the lithomer having a wave-like structure in its initial stage. It exhibited a roughly 27 times improvement in fracture toughness with a moderate decrease in stiffness of approx. 1/5 compared to the pure matrix material.
Details
Original language | English |
---|---|
Article number | 103519 |
Number of pages | 9 |
Journal | Results in Engineering |
Volume | 24.2024 |
Issue number | December |
DOIs | |
Publication status | Published - Dec 2024 |