Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometry
Research output: Contribution to journal › Article › Research › peer-review
Authors
Organisational units
External Organisational units
- The State Key Laboratory of Refractories and Metallurgy
- Department of Thermal Engineering
- Department of Materials Science and Engineering
Abstract
Continuous cooling transformation (CCT) diagrams represent roadmaps for producing all heat-treatable steels. CCT curves provide valuable information on the solid-state phase transformation sequence, depending on the defined cooling strategies, the alloying concept of the steel and previous processing steps. The experimental characterization of CCT diagrams is usually done on a laboratory scale applying thermal analysis of dilatometry. In current research studies, however, also other in-situ methods such as high-temperature laser scanning confocal microscopy (HT-LSCM) or differential scanning calorimetry (DSC) are frequently used to investigate phase transformations during thermal cycling. In the present study, HT-LSCM observations and DSC analysis are critically compared with dilatometry results by investigating the CCT diagram of a 0.4%C-1.8%Si-2.8%Mn-0.5%Al (in mass pct.) advanced steel grade. Furthermore, classical examinations by optical microscopy and hardness measurements were performed to support the analysis. In general, very good consistencies between all experimental techniques were identified in determining the transformation start temperature for pearlite, bainite and martensite. The optical microscopy confirmed the observed phase transformations and the results correlated with the measured hardness response. Based on the results, coupling of HT-LSCM and DSC is considered as a valuable novel approach to plot CCT diagrams in future research.
Details
Original language | English |
---|---|
Pages (from-to) | 3534-3547 |
Number of pages | 14 |
Journal | Journal of Materials Research and Technology |
Volume | 24.2023 |
Issue number | May-June |
DOIs | |
Publication status | Published - 17 Apr 2023 |