Auswirkungen von Regelstrategien und Betriebsbedingungen auf das Degradationsverhalten eines Lithium-Ionen-Batteriespeichers bei Ultra-Schnellladestationen
Research output: Thesis › Master's Thesis
Standard
2020.
Research output: Thesis › Master's Thesis
Harvard
APA
Vancouver
Author
Bibtex - Download
}
RIS (suitable for import to EndNote) - Download
TY - THES
T1 - Auswirkungen von Regelstrategien und Betriebsbedingungen auf das Degradationsverhalten eines Lithium-Ionen-Batteriespeichers bei Ultra-Schnellladestationen
AU - Weißböck, Lukas Georg
N1 - gesperrt bis null
PY - 2020
Y1 - 2020
N2 - Im Zuge des EU-geförderten SYNERG-E Projektes wurden an mehreren Standorten in Österreich und Deutschland Ultra-Schnellladestationen mit Lithium-Ionen-Batteriespeicher gekoppelt. Die Motivation liegt in der Entlastung des Netzes durch Spitzenglättung, der Vermarktung am Regelenergiemarkt und im Trading. Neben einer kurzen Ladedauer der Elektrofahrzeuge liegt vor allem ein vermeidlicher Netzausbau im Interesse des Netzbetreibers. Ziel der wissenschaftlichen Arbeit ist die Gegenüberstellung und Interpretation des Degradationsverhaltens des eingesetzten Lithium-Ionen-Batteriespeichers, als Funktion verschiedener Regelstrategien und Betriebsbedingungen. Das pythonbasierte SimSES-Tool der TU-München, welches „opensource“ zur Verfügung steht, wurde dafür herangezogen. Im Rahmen dieser Arbeit wurde auf Empfehlung von Entwicklungsexperten des SimSES-Tools der TU-München auf ein thermisches Modell verzichtet. Der Temperatureinfluss wurde anhand der vorhandenen Degradationsmessungen des Zellherstellers und Abschätzungen der Temperaturentwicklung unter Belastung beleuchtet und diskutiert. Nach Kalibration und Validierung des zu simulierenden Batteriespeichersystems wurde das SimSES-Tool mit Lastprofilen gespeist, die Ergebnisse aufbereitet, ausgewertet, gegenübergestellt, interpretiert und diskutiert. Bezogen auf die aktuelle Betriebsweise degradiert der Batteriespeicher hauptsächlich (99%) kalendarisch, wird kaum zykliert und weist lange Ruhezeiten auf. In der Studie wurden folgende Zusammenhänge bezüglich kalendarischem Degradationsverhalten ausgearbeitet: „Je niedriger der durchschnittliche Ladezustand, desto geringer ist der kalendarische Degradationsfortschritt“. Das Ziel ist die Vermeidung langfristig hoher Ladezustände. Mit zukünftiger Regelenergievermarktung, sowie der von ALLEGO prognostizierten zunehmenden Elektromobilitätsentwicklung wird der aktuell geringe zyklische Degradationsfortschritt an Bedeutung gewinnen. Im Zuge dessen wurden zum zyklischen Degradationsverhalten folgender Zusammenhang ausgearbeitet: „Je niedriger die Zyklierungstiefe und der durchschnittliche Lade- bzw. Entladestrom, desto geringer ist der zyklische Degradationsfortschritt.“
AB - Im Zuge des EU-geförderten SYNERG-E Projektes wurden an mehreren Standorten in Österreich und Deutschland Ultra-Schnellladestationen mit Lithium-Ionen-Batteriespeicher gekoppelt. Die Motivation liegt in der Entlastung des Netzes durch Spitzenglättung, der Vermarktung am Regelenergiemarkt und im Trading. Neben einer kurzen Ladedauer der Elektrofahrzeuge liegt vor allem ein vermeidlicher Netzausbau im Interesse des Netzbetreibers. Ziel der wissenschaftlichen Arbeit ist die Gegenüberstellung und Interpretation des Degradationsverhaltens des eingesetzten Lithium-Ionen-Batteriespeichers, als Funktion verschiedener Regelstrategien und Betriebsbedingungen. Das pythonbasierte SimSES-Tool der TU-München, welches „opensource“ zur Verfügung steht, wurde dafür herangezogen. Im Rahmen dieser Arbeit wurde auf Empfehlung von Entwicklungsexperten des SimSES-Tools der TU-München auf ein thermisches Modell verzichtet. Der Temperatureinfluss wurde anhand der vorhandenen Degradationsmessungen des Zellherstellers und Abschätzungen der Temperaturentwicklung unter Belastung beleuchtet und diskutiert. Nach Kalibration und Validierung des zu simulierenden Batteriespeichersystems wurde das SimSES-Tool mit Lastprofilen gespeist, die Ergebnisse aufbereitet, ausgewertet, gegenübergestellt, interpretiert und diskutiert. Bezogen auf die aktuelle Betriebsweise degradiert der Batteriespeicher hauptsächlich (99%) kalendarisch, wird kaum zykliert und weist lange Ruhezeiten auf. In der Studie wurden folgende Zusammenhänge bezüglich kalendarischem Degradationsverhalten ausgearbeitet: „Je niedriger der durchschnittliche Ladezustand, desto geringer ist der kalendarische Degradationsfortschritt“. Das Ziel ist die Vermeidung langfristig hoher Ladezustände. Mit zukünftiger Regelenergievermarktung, sowie der von ALLEGO prognostizierten zunehmenden Elektromobilitätsentwicklung wird der aktuell geringe zyklische Degradationsfortschritt an Bedeutung gewinnen. Im Zuge dessen wurden zum zyklischen Degradationsverhalten folgender Zusammenhang ausgearbeitet: „Je niedriger die Zyklierungstiefe und der durchschnittliche Lade- bzw. Entladestrom, desto geringer ist der zyklische Degradationsfortschritt.“
KW - degradation
KW - lithium-ion
KW - battery
KW - calendar degradation
KW - cyclical degradation
KW - control strategies
KW - peak-shaving
KW - Degradation
KW - Lithium-Ionen
KW - Batterie
KW - kalendarische Degradation
KW - zyklische Degradation
KW - Regelstrategien
KW - Peak-Shaving
M3 - Masterarbeit
ER -