Analysis of surface and downhole microseismic monitoring coupled with hydraulic fracture modeling in the Woodford Shale

Research output: ThesisMaster's Thesis

Bibtex - Download

@mastersthesis{c64082ea69a24770a6010f65d8bfb487,
title = "Analysis of surface and downhole microseismic monitoring coupled with hydraulic fracture modeling in the Woodford Shale",
abstract = "The work presented in this paper analyzes surface and downhole microseismic data for a horizontal well in the Woodford Shale in Oklahoma and compares those results with calibrated hydraulic fracture modeling. Hydraulic fracture models were created for each of five stages with a three-dimensional modeling software, incorporating available petrophysical data in order to match the recorded treatment pressure and the fracture geometry obtained from the microseismic data. Further analysis investigated the congruency of the downhole and the surface microseismic data, what difference they produced in a match if used exclusively, the influence of the number of events on the fracture geometry obtained from the microseismic data, the error of event location, the degree of complexity of the created fracture network, and the relationship between the magnitude of events and the time and location of their occurrence. The fracture models produced good matches for both pressure and fracture geometry but showed problems matching the fracture height due to cross-stage fracturing into parts of the reservoir that were already stimulated in a previous stage. Surface and downhole microseismic data overlapped in certain regions and picked up on different things in others, giving a more complete picture of microseismic activity and fracture growth if used together. However, they deviated in terms of vertical event location with surface data showing more upward growth and downhole data showing more downward growth. In general, the downhole microseismic data showed that the stimulation treatment was successful in creating a fairly complex hydraulic fracture network for all stages, with microseismic recordings making flow paths visible governed by both paleo and present day stress. Plots showing the speed of event generation, the cumulative seismic moment, and the event magnitude versus the event-to-receiver-distance identified interaction with pre-existing fault structures during Stages III and V.",
keywords = "Hydraulic fracturing, microseismic monitoring, fracture modeling, Hydraulic Fracturing, mikroseischmisches Monitoring, hydraulic fracture Modelle",
author = "Neuhaus, {Carl Wilbur}",
note = "embargoed until null",
year = "2011",
language = "English",
school = "Montanuniversitaet Leoben (000)",

}

RIS (suitable for import to EndNote) - Download

TY - THES

T1 - Analysis of surface and downhole microseismic monitoring coupled with hydraulic fracture modeling in the Woodford Shale

AU - Neuhaus, Carl Wilbur

N1 - embargoed until null

PY - 2011

Y1 - 2011

N2 - The work presented in this paper analyzes surface and downhole microseismic data for a horizontal well in the Woodford Shale in Oklahoma and compares those results with calibrated hydraulic fracture modeling. Hydraulic fracture models were created for each of five stages with a three-dimensional modeling software, incorporating available petrophysical data in order to match the recorded treatment pressure and the fracture geometry obtained from the microseismic data. Further analysis investigated the congruency of the downhole and the surface microseismic data, what difference they produced in a match if used exclusively, the influence of the number of events on the fracture geometry obtained from the microseismic data, the error of event location, the degree of complexity of the created fracture network, and the relationship between the magnitude of events and the time and location of their occurrence. The fracture models produced good matches for both pressure and fracture geometry but showed problems matching the fracture height due to cross-stage fracturing into parts of the reservoir that were already stimulated in a previous stage. Surface and downhole microseismic data overlapped in certain regions and picked up on different things in others, giving a more complete picture of microseismic activity and fracture growth if used together. However, they deviated in terms of vertical event location with surface data showing more upward growth and downhole data showing more downward growth. In general, the downhole microseismic data showed that the stimulation treatment was successful in creating a fairly complex hydraulic fracture network for all stages, with microseismic recordings making flow paths visible governed by both paleo and present day stress. Plots showing the speed of event generation, the cumulative seismic moment, and the event magnitude versus the event-to-receiver-distance identified interaction with pre-existing fault structures during Stages III and V.

AB - The work presented in this paper analyzes surface and downhole microseismic data for a horizontal well in the Woodford Shale in Oklahoma and compares those results with calibrated hydraulic fracture modeling. Hydraulic fracture models were created for each of five stages with a three-dimensional modeling software, incorporating available petrophysical data in order to match the recorded treatment pressure and the fracture geometry obtained from the microseismic data. Further analysis investigated the congruency of the downhole and the surface microseismic data, what difference they produced in a match if used exclusively, the influence of the number of events on the fracture geometry obtained from the microseismic data, the error of event location, the degree of complexity of the created fracture network, and the relationship between the magnitude of events and the time and location of their occurrence. The fracture models produced good matches for both pressure and fracture geometry but showed problems matching the fracture height due to cross-stage fracturing into parts of the reservoir that were already stimulated in a previous stage. Surface and downhole microseismic data overlapped in certain regions and picked up on different things in others, giving a more complete picture of microseismic activity and fracture growth if used together. However, they deviated in terms of vertical event location with surface data showing more upward growth and downhole data showing more downward growth. In general, the downhole microseismic data showed that the stimulation treatment was successful in creating a fairly complex hydraulic fracture network for all stages, with microseismic recordings making flow paths visible governed by both paleo and present day stress. Plots showing the speed of event generation, the cumulative seismic moment, and the event magnitude versus the event-to-receiver-distance identified interaction with pre-existing fault structures during Stages III and V.

KW - Hydraulic fracturing

KW - microseismic monitoring

KW - fracture modeling

KW - Hydraulic Fracturing

KW - mikroseischmisches Monitoring

KW - hydraulic fracture Modelle

M3 - Master's Thesis

ER -